SEARCH

SEARCH BY CITATION

References

  • Ahlström, A., G. Schurgers, A. Arneth, and B. Smith (2012), Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett., 7(4), 044008.
  • Amiro, B. D., et al. (2010), Ecosystem carbon dioxide fluxes after disturbance in forests of North America, J. Geophys. Res., 115, G00K02, doi:10.1029/2010JG001390.
  • Anderegg, W. R. L., L. Plavcová, L. D. L. Anderegg, U. G. Hacke, J. A. Berry, and C. B. Field (2013), Drought's legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk, Global Change Biol., 19(4), 11881196.
  • Anderson-Teixeira, K. J., J. P. Delong, A. M. Fox, D. A. Brese, and M. E. Litvak (2011), Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico, Global Change Biol., 17(1), 410424.
  • Baldocchi, D. (2008), Turner Review No. 15. “Breathing”of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56(1), 126.
  • Baldocchi, D., et al. (2001), Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82(11), 24152434.
  • Bauweraerts, I., M. Ameye, T. M. Wertin, M. A. McGuire, R. O. Teskey, and K. Steppe (2014), Water availability is the decisive factor for the growth of two tree species in the occurrence of consecutive heat waves, Agric. For. Meteorol., 189, 1929.
  • Beer, C., et al. (2010), Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate, Science, 329(5993), 834838.
  • Berry, J., and O. Bjorkman (1980), Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev. Plant Physiol., 31(1), 491543.
  • Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the glue methodology, J. Hydrol., 249(1), 1129.
  • Brando, P. M., D. C. Nepstad, E. A. Davidson, S. E. Trumbore, D. Ray, and P. Camargo (2008), Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: Results of a throughfall reduction experiment, Philos. Trans. R. Soc. London, Ser. B, 363(1498), 18391848.
  • Burroughs, W. (2003), Climate: Into the 21st century, Cambridge Univ. Press, Cambridge, U. K.
  • Chapin, F., III et al. (2006), Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9(7), 10411050.
  • Ciais, P., et al. (2005), Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437(7058), 529533.
  • Clark, D. A. (2004), Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition, Philos. Trans. R. Soc. London, Ser. B, 359(1443), 477491.
  • Clark, D. B., D. A. Clark, and S. F. Oberbauer (2010), Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2, Global Change Biol., 16(2), 747759.
  • Corlett, R. T. (2011), Impacts of warming on tropical lowland rainforests, Trends Ecol. Evol., 26(11), 606613.
  • Fischer, E., U. Beyerle, and R. Knutti (2013), Robust spatially aggregated projections of climate extremes, Nat. Clim. Change, 3(12), 10331038.
  • Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, J. Clim., 19(14), 33373353.
  • Handmer, J., et al. (2012), Changes in impacts of climate extremes: Human systems and ecosystems, in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC SREX Report), edited by C. B. Field et al., pp. 231290, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Hansen, J., M. Sato, and R. Ruedy (2012), Perception of climate change, Proc. Natl. Acad. Sci., 109(37), E2415E2423.
  • Hartmann, H., W. Ziegler, and S. Trumbore (2013), Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy, Funct. Ecol., 27, 413427.
  • Hayes, D., and D. Turner (2012), The need for “apples-to-apples” comparisons of carbon dioxide source and sink estimates, Eos, Trans. AGU, 93(41), 404405.
  • Holmgren, M., M. Hirota, E. H. van Nes, and M. Scheffer (2013), Effects of interannual climate variability on tropical tree cover, Nat. Clim. Change, 3, 755758.
  • Huntzinger, D., et al. (2012), North American carbon program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison, Ecol. Modell., 232, 144157.
  • Huntzinger, D. N., et al. (2013), The North American carbon program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project—Part 1: Overview and experimental design, Geosci. Model Dev., 6(6), 21212133.
  • Ito, A., and M. Inatomi (2012), Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles, J. Hydrometeorol., 13(2), 681694.
  • Jain, A. K., H. S. Kheshgi, and D. J. Wuebbles (1996), A globally aggregated reconstruction of cycles of carbon and its isotopes, Tellus B, 48(4), 583600.
  • Joetzjer, E., H. Douville, C. Delire, P. Ciais, B. Decharme, and S. Tyteca (2013), Hydrologic benchmarking of meteorological drought indices at interannual to climate change timescales: A case study over the Amazon and Mississippi river basins, Hydrol. Earth Syst. Sci., 17(12), 48854895.
  • Jones, C., et al. (2013), 21st century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth system models under 4 representative concentration pathways, J. Clim., 26, 43984413.
  • Keenan, T., et al. (2012), Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange, Global Change Biol., 18(6), 19711987.
  • Kelley, D., I. C. Prentice, S. Harrison, H. Wang, M. Simard, J. Fisher, and K. Willis (2013), A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10(5), 33133340.
  • Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai (2011), Permafrost carbon-climate feedbacks accelerate global warming, Proc. Natl. Acad. Sci., 108(36), 14,76914,774.
  • Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice (2005), A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19(1), GB1015, doi:10.1029/2003GB002199.
  • Law, B., F. Kelliher, D. Baldocchi, P. Anthoni, J. Irvine, D. v. Moore, and S. Van Tuyl (2001), Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought, Agric. For. Meteorol., 110(1), 2743.
  • Le Quéré, C., et al. (2013), The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165185.
  • Leonard, M., et al. (2013), A compound event framework for understanding extreme impacts, WIREs Clim Change, 5, 113128, doi:10.1002/wcc.252.
  • Li, H., M. Huang, M. S. Wigmosta, Y. Ke, A. M. Coleman, L. R. Leung, A. Wang, and D. M. Ricciuto (2011), Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed, J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.
  • Lloyd-Hughes, B. (2012), A spatio-temporal structure-based approach to drought characterisation, Int. J. Climatol., 32(3), 406418.
  • Mahecha, M. D., et al. (2010), Global convergence in the temperature sensitivity of respiration at ecosystem level, Science, 329(5993), 838840.
  • Mao, J., P. E. Thornton, X. Shi, M. Zhao, and W. M. Post (2012), Remote sensing evaluation of CLM4 GPP for the period 2000–09*, J. Clim., 25(15), 53275342.
  • McDowell, N. G. (2011), Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality, Plant Physiol., 155(3), 10511059.
  • McGuire, A. D., et al. (2009), Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 79(4), 523555.
  • McKee, T. B., N. J. Doesken, and J. Kleist (1993), The relationship of drought frequency and duration to time scales, in Proceedings of the 8th Conference of Applied Climatology, 17–22 January, Anaheim, CA, pp. 179183, American Meterological Society, Boston, Mass.
  • Meir, P., D. Metcalfe, A. Costa, and R. Fisher (2008), The fate of assimilated carbon during drought: Impacts on respiration in Amazon rainforests, Philos. Trans. R. Soc. London, Ser. B, 363(1498), 18491855.
  • Mora, C., et al. (2013), The projected timing of climate departure from recent variability, Nature, 502(7470), 183187.
  • Mueller, B., and S. I. Seneviratne (2012), Hot days induced by precipitation deficits at the global scale, Proc. Natl. Acad. Sci., 109(31), 12,39812,403.
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2003), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300(5625), 15601563.
  • Phillips, O. L., et al. (2010), Drought-mortality relationships for tropical forests, New Phytol., 187(3), 631646.
  • Piao, S., et al. (2013), Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Global Change Biol., 19, 21172132.
  • Raczka, B. M., et al. (2013), Evaluation of continental carbon cycle simulations with North American flux tower observations, Ecol. Monogr., 83, 531556.
  • Randerson, J. T., et al. (2009), Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models, Global Change Biol., 15(10), 24622484.
  • Rastetter, E. B. (2011), Modeling coupled biogeochemical cycles, Front. Ecol. Environ., 9(1), 6873.
  • Reichstein, M., et al. (2013), Climate extremes and the carbon cycle, Nature, 500(7462), 287295.
  • Ricciuto, D. M., A. W. King, D. Dragoni, and W. M. Post (2011), Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length, J. Geophys. Res., 116, G01033, doi:10.1029/2010JG001400.
  • Rustad, L., G. Campbell, G. Marion, R. Norby, M. Mitchell, A. Hartley, J. Cornelissen, J. Gurevitch, and GCTE-News (2001), A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia, 126(4), 543562.
  • Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett (2011), Amount and timing of permafrost carbon release in response to climate warming, Tellus B, 63(2), 165180.
  • Schneider von Deimling, T., M. Meinshausen, A. Levermann, V. Huber, K. Frieler, D. Lawrence, and V. Brovkin (2012), Estimating the near-surface permafrost-carbon feedback on global warming, Biogeosciences, 9(2), 649665.
  • Schwalm, C. R., et al. (2010), Assimilation exceeds respiration sensitivity to drought: A fluxnet synthesis, Global Change Biol., 16(2), 657670.
  • Schwalm, C. R., et al. (2012), Reduction in carbon uptake during turn of the century drought in western North America, Nat. Geosci., 5(8), 551556.
  • Schwalm, C. R., D. N. Huntinzger, A. M. Michalak, J. B. Fisher, J. S. Kimball, B. Mueller, K. Zhang, and Y. Zhang (2013), Sensitivity of inferred climate model skill to evaluation decisions: A case study using CMIP5 evapotranspiration, Environ. Res. Lett., 8(2), 024,028.
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling (2010), Investigating soil moisture-climate interactions in a changing climate: A review, Earth Sci. Rev., 99(3), 125161.
  • Seneviratne, S. I., et al. (2012), Changes in climate extremes and their impacts on the natural physical environment, in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC SREX Report), edited by C. B. Field et al., pp. 109230, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Shi, X., J. Mao, P. E. Thornton, F. M. Hoffman, and W. M. Post (2011), The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow, Geophys. Res. Lett., 38, L08704, doi:10.1029/2011GL046773.
  • Sillmann, J., V. Kharin, F. Zwiers, X. Zhang, and D. Bronaugh (2013), Climate extreme indices in the CMIP5 multi-model ensemble. Part 2: Future climate projections, J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.
  • Sitch, S., et al. (2003), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9(2), 161185.
  • Smith, M. D. (2011), An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research, J. Ecol., 99(3), 656663.
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier (2012), Trends in arctic sea ice extent from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.
  • Tang, J., and Q. Zhuang (2008), Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics, J. Geophys. Res., 113, G04010, doi:10.1029/2008JG000757.
  • Thornton, P., et al. (2002), Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agric. For. Meteorol., 113(1), 185222.
  • Tian, H., X. Xu, C. Lu, M. Liu, W. Ren, G. Chen, J. Melillo, and J. Liu (2011), Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming, J. Geophys. Res., 116, G02011, doi:10.1029/2010JG001393.
  • Tian, H., et al. (2012), Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States, Ecosystems, 15(4), 674694.
  • von Liebig, J. (1847), Chemistry in Its Applications to Agriculture and Physiology, Taylor and Walton, London, U. K.
  • Wang, W., et al. (2013), Variations in atmospheric CO2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci., 110(32), 13,06113,066.
  • Wei, Y., et al. (2013), The North American carbon program multi-scale synthesis and terrestrial model intercomparison project: Part 2—Environmental driver data, Geosci. Model Dev. Discuss., 6, 53755422.
  • Wu, Z., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate (2011), Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation, Global Change Biol., 17(2), 927942.
  • Zeng, N., A. Mariotti, and P. Wetzel (2005), Terrestrial mechanisms of interannual CO2 variability, Global Biogeochem. Cycles, 19(1), GB1016, doi:10.1029/2004GB002273.
  • Zhao, M., and S. W. Running (2010), Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 329(5994), 940943.
  • Zscheischler, J., M. D. Mahecha, S. Harmeling, and M. Reichstein (2013), Detection and attribution of large spatiotemporal extreme events in Earth observation data, Ecol. Inf., 15, 6673.
  • Zscheischler, J., M. D. Mahecha, J. von Buttlar, S. Harmeling, M. Jung, A. Rammig, J. T. Randerson, B. Schölkopf, S. I. Seneviratne, and E. Tomelleri (2014a), A few extreme events dominate global interannual variability in gross primary production, Environ. Res. Lett., 9, 035001.
  • Zscheischler, J., M. D. Mahecha, S. Harmeling, A. Rammig, E. Tomelleri, and M. Reichstein (2014b), Extreme events in gross primary production: A characterization across continents, Biogeosciences, 11, doi:10.5194/bgd-11-1869-2014.