SEARCH

SEARCH BY CITATION

References

  • Allen, D., K. Pickering, B. Duncan, and M. Damon (2010), Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res., 115, D22301, doi:10.1029/2010JD014062.
  • Bergamaschi, P., et al. (2007), Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, doi:10.1029/2006JD007268.
  • Bergamaschi, P., et al. (2009), Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, doi:10.1029/2009JD012287.
  • Bergamaschi, P., et al. (2013), Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res. Atmos., 118, 73507369, doi:10.1002/jgrd.50480.
  • Bocquet, M. (2005), Grid resolution dependence in the reconstruction of an atmospheric tracer source, Nonlinear Processes Geophys., 12, 219234.
  • Bocquet, M. (2009), Toward optimal choices of control space representation for geophysical data assimilation, Mon. Weather Rev., 137, 23312348, doi:10.1175/2009MWR2789.1.
  • Bocquet, M., L. Wu, and F. Chevallier (2011), Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism, Q. J. R. Meteorol. Soc., 137, 13401356, doi:10.1002/qj.837.
  • Brandt, A. R., et al. (2014), Methane leaks from North American natural gas systems, Science, 343, 733735, doi:10.1126/science.1247045.
  • Butz, A., A. Galli, O. Hasekamp, J. Landgraf, P. Tol, and I. Aben (2012), TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres, Remote Sens. Environ., 120, 267276, doi:10.1016/j.rse.2011.05.030.
  • Colman, J. J., A. L. Swanson, S. Meinardi, B. C. Sive, D. R. Blake, and F. S. Rowland (2001), Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B, Anal. Chem., 73, 37233731, doi:10.1021/ac010027g.
  • Considine, D. B., J. A. Logan, and M. A. Olsen (2008), Evaluation of near-tropopause ozone distributions in the Global Modeling Initiative combined stratosphere/troposphere model with ozonesonde data, Atmos. Chem. Phys., 8(9), 23652385, doi:10.5194/acp-8-2365-2008.
  • Cressot, C., et al. (2014), On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577592, doi:10.5194/acp-14-577-2014.
  • Crevoisier, C., et al. (2013), The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI, Atmos. Chem. Phys., 13, 42794289, doi:10.5194/acp-13-4279-2013.
  • Dils, B., et al. (2006), Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O, Atmos. Chem. Phys., 6, 19531976, doi:10.5194/acp-6-1953-2006.
  • European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency (2009), Emission Database for Global Atmospheric Research (EDGAR), release version 4.0. [Available at http://edgar.jrc.ec.europa.eu.]
  • Frankenberg, C., J. F. Meirink, P. Bergamaschi, A. P. H. Goede, M. Heimann, S. Kröner, U. Platt, M. van Weele, and T. Wagner (2006), Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004, J. Geophys. Res., 111, D07303, doi:10.1029/2005JD006235.
  • Frankenberg, C., P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben (2008), Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT, Geophys. Res. Lett., 35, L15811, doi:10.1029/2008GL034300.
  • Frankenberg, C., I. Aben, P. Bergamaschi, E. J. Dlugokencky, R. van Hees, S. Houweling, P. van der Meer, R. Snel, and P. Tol (2011), Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, J. Geophys. Res., 116, D02304, doi:10.1029/2010JD014849.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser (1991), Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,03313,065, doi:10.1029/91JD01247.
  • Hartmann, D. L., et al. (2013), Observations: Atmosphere and surface, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 159254, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Heald, C., D. Jacob, D. Jones, P. Palmer, J. Logan, D. Streets, G. Sachse, J. Gille, R. Hoffman, and T. Nehrkorn (2004), Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide, J. Geophys. Res., 109, D23306, doi:10.1029/2004JD005185.
  • Henze, D. K., A. Hakami, and J. H. Seinfeld (2007), Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 24132433.
  • Houweling, S., et al. (2013), A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmos. Chem. Phys. Discuss., 13, 28,11728,171, doi:10.5194/acpd-13-28117-2013.
  • International Energy Agency (2013), World Energy Outlook Special Report: Redrawing the Energy-Climate Map, International Energy Agency, Paris, France, 10 June. [Available at http://www.worldenergyoutlook.org/media/weowebsite/2013/energyclimatemap/RedrawingEnergyClimateMap.pdf.]
  • Johnson, S. (1967), Hierarchical clustering schemes, Psychometrika, 32(3), 241254, doi:10.1007/BF02289588.
  • Kaplan, J. O. (2002), Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett., 29(6), 1079, doi:10.1029/2001GL013366.
  • Karion, A., et al. (2013), Methane emissions estimate from airborne measurements over a western United States natural gas field, Geophys. Res. Lett., 40, 43934397, doi:10.1002/grl.50811.
  • Katzenstein, A. S., L. A. Doezema, I. J. Simpson, D. R. Blake, and F. S. Rowland (2003), Extensive regional atmospheric hydrocarbon pollution in the southwestern United States, Proc. Natl. Acad. Sci. U.S.A., 100(21), 11,97511,979, doi:10.1073/pnas.1635258100.
  • Kirschke, S., et al. (2013), Three decades of methane sources and sinks: Budgets and variations, Nat. Geosci., 6, 813823, doi:10.1038/ngeo1955.
  • Kort, E. A., J. Eluszkiewicz, B. B. Stephens, J. B. Miller, C. Gerbig, T. Nehrkorn, B. C. Daube, J. O. Kaplan, S. Houweling, and S. C. Wofsy (2008), Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations, Geophys. Res. Lett., 35, L18808, doi:10.1029/2008GL034031.
  • Meirink, J. F., et al. (2008), Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations, J. Geophys. Res., 113, D17301, doi:10.1029/2007JD009740.
  • Michalak, A. M., L. Bruhwiler, and P. P. Tans (2004), A geostatistical approach to surface flux estimation of atmospheric trace gases, J. Geophys. Res., 109, D14109, doi:10.1029/2003JD004422.
  • Miller, S. M., et al. (2013), Anthropogenic emissions of methane in the United States, Proc. Natl. Acad. Sci. U.S.A., doi:10.1073/pnas.1314392110.
  • Miller, S. M., et al. (2014), Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions, Global Biogeochem. Cycles, 28, 146160, doi:10.1002/2013GB004580.
  • Monteil, G., S. Houweling, A. Butz, S. Guerlet, D. Schepers, O. Hasekamp, C. Frankenberg, R. Scheepmaker, I. Aben, and T. Röckmann (2013), Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations, J. Geophys. Res. Atmos., 118, 11,80711,823, doi:10.1002/2013JD019760.
  • Mu, M., et al. (2010), Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide, J. Geophys. Res., 116, D24303, doi:10.1029/2011JD016245.
  • Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak (2012), Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi:10.1029/2012JD017934.
  • Myhre, G., et al. (2013), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 659740, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin (2004), Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.
  • Park, R. J., D. J. Jacob, N. Kumar, and R. M. Yantosca (2006), Regional visibility statistics in the United States: Natural and transboundary pollution influences, and implications for the Regional Haze Rule, Atmos. Environ., 40(28), 54055423, doi:10.1016/j.atmosenv.2006.04.059.
  • Parker, R., et al. (2011), Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations, Geophys. Res. Lett., 38, L15807, doi:10.1029/2011GL047871.
  • Pétron, G., et al. (2012), Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304, doi:10.1029/2011JD016360.
  • Pickett-Heaps, C. A., D. J. Jacob, K. J. Wecht, E. A. Kort, S. C. Wofsy, G. S. Diskin, D. E. J. Worthy, J. O. Kaplan, I. Bey, and J. Drevet (2011), Magnitude of seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys., 11(8), 37733779, doi:10.5194/acp-11-3773-2011.
  • Prather, M. J., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.
  • Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding, World Scientific Co. Pte. Ltd., Tokyo.
  • Schepers, D., et al. (2012), Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, J. Geophys. Res., 117, D10307, doi:10.1029/2012JD017549.
  • Singh, H. B., W. H. Brune, J. H. Crawford, and D. J. Jacob (2006), Overview of the summer 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A), J. Geophys. Res., 111, D24S01, doi:10.1029/2006JD007905.
  • Turner, A. J., D. J. Jacob, K. J. Wecht, M. Sulprizio, V. Payne, G. Santoni, S. C. Wofsy, K. W. Bowman, R. Parker, and H. Boesch (2013), Optimal estimation of North American methane emissions using GOSAT data: A contribution to the NASA Carbon Monitoring System, paper presented at 2013 Fall Meeting, AGU, San Francisco, Calif.
  • United States Environmental Protection Agency (EPA) (2013), Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011-Annexes. [Available at http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2013-Main-Text.pdf.]
  • United States Government Accountability Office (2010), Federal Oil and Gas Leases: Opportunities exist to capture vented and flared natural gas, which would increase royalty payments and reduce greenhoues gases, Report to Congressional Requesters, Washington, D. C. [Available at http://www.gao.gov/assets/320/311826.pdf.]
  • van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen (2010), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11,70711,735, doi:10.5194/acp-10-11707-2010.
  • Van Donkelaar, A., R. V. Martin, A. N. Pasch, J. J. Szykman, L. Zhang, Y. X. Wang, and D. Chen (2012), Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America, Environ. Sci. Technol., 46(21), 11,97111,978, doi:10.1021/es3025319.
  • van Vuuren, D. P., E. Stehfest, M. G. J. den Elzen, J. van Vliet, and M. Isaac (2010), Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100, Energy Econ., 32, 11051120.
  • Veefkind, J. P., et al. (2012), TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 7083, doi:10.1016/j.rse.2011.09.027.
  • Voulgarakis, A., et al. (2013), Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys., 13, 25632587, doi:10.5194/acp-13-2563-2013.
  • Wang, J. S., J. L. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca (2004), 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cycles, 18, GB3011, doi:10.1029/2003GB002180.
  • Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. R. Worden, S. S. Kulawik, D. K. Henze, M. Kopacz, and V. H. Payne (2012), Validation of TES methane with HIPPO aircraft observations: Implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 18231832, doi:10.5194/acp-12-1823-2012.
  • Wecht, K. J., D. J. Jacob, M. P. Sulprizio, G. W. Santoni, S. C. Wofsy, R. Parker, and J. R. Worden (2014), Spatially resolving methane emissions in California: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, GEO-CAPE) satellite observations, Atmos. Chem. Phys. Discuss., 14, 41194148, doi:10.5194/acpd-14-4119-2014.
  • Weyant, J. P., F. C. de la Chesnaye, and G. J. Blanford (2006), Overview of EMF-21: Multigas mitigation climate policy, Energy J., Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 27(3), 132.
  • Wofsy, S. C., and the HIPPO Science Team and Cooperating Modelers and Satellite Teams (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols, Philos. Trans. R. Soc. A, 369(1943), 20732086, doi:10.1098/rsta.2010.0313.
  • Worden, J., S. Kulawik, C. Frankenberg, K. Bowman, V. Payne, K. Cady-Peirara, K. Wecht, J.-E. Lee, D. Noone, and C. Risi (2012), Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances, Atmos. Meas. Tech., 5, 397411, doi:10.5194/amt-5-397-2012.
  • Wu, L., M. Bocquet, T. Lauvaux, F. Chevallier, P. Rayner, and K. Davis (2011), Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data, J. Geophys. Res., 116, D21304, doi:10.1029/2011JD016198.
  • Xiao, Y., J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake (2008), Global budget of ethane and regional constraints on U.S. sources, J. Geophys. Res., 113, D21306, doi:10.1029/2007JD009415.
  • Xiong, X., C. Barnet, E. Maddy, C. Sweeney, X. Liu, L. Zhou, and M. Goldberg (2008), Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS), J. Geophys. Res., 113, G00A01, doi:10.1029/2007JD000500.
  • Xiong, X., C. Barnet, E. S. Maddy, A. Gambacorta, T. S. King, and S. C. Wofsy (2013), Mid-upper tropospheric methane retrieval from IASI and its validation, Atmos. Meas. Tech., 6, 22552265, doi:10.5194/amt-6-2255-2013.
  • Zhang, L., D. J. Jacob, N. V. Smith-Downey, D. A. Wood, D. Blewitt, C. C. Carouge, A. van Donkelaar, D. B. A. Jones, L. T. Murray, and Y. Wang (2011), Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America, Atmos. Environ., 45, 67696776, doi:10.1016/j.atmosenv.2011.07.054.
  • Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger, C. C. Carouge, A. van Donkelaar, Y. Wang, and C. Chen (2012), Nitrogen deposition to the United States: Distribution, sources, and processes, Atmos. Chem. Phys., 12, 453944,554, doi:10.5194/acp-12-4539-2012.
  • Zhang, Y., et al. (2012), Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., 12, 60956111, doi:10.5194/acp-12-6095-2012.
  • Zhu, X., et al. (2013), Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks, Global Biogeochem. Cycles, 27, 592604, doi:10.1002/gbc.20052.