Get access

Social and Structural Patterns of Drought-Related Water Conservation and Rebound

Authors


Abstract

Water use practices and conservation are the result of complex sociotechnical interactions of political, economic, hydroclimatic, and social factors. While the drivers of water demand have been extensively studied, they have traditionally been applied to models that assume stationary relationships between these various factors, and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as “rebounding” water use. Previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this work, we develop a system dynamics model to represent water demand as a function of both structural and social factors. We apply this model to the analysis of three diverse water utilities in the San Francisco Bay Area between 1980 and 2017, identifying drought response trends and drivers over time. Our model is consistent with empirical patterns and historical context of water use in California, and provides important insights on the rebound phenomenon that can be extended to other locations. This comparative assessment indicates that policies, public outreach, and better data availability have played a key role in raising public awareness of water scarcity, especially with the raise of the internet era in recent years.

Ancillary