17. Polycrystal Elasticity and Plasticity Models

  1. Dr. Dierk Raabe1,2

Published Online: 24 MAR 2004

DOI: 10.1002/3527601945.ch17

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

How to Cite

Raabe, D. (1998) Polycrystal Elasticity and Plasticity Models, in Computational Materials Science: The Simulation of Materials, Microstructures and Properties, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527601945.ch17

Author Information

  1. 1

    Department for Materials Science & Engineering, Carnegie Mellon University, Room 3317, Wean Hall, Pittsburgh, PA 15213-3890, USA

  2. 2

    Institut für Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstraße 14, 52056 Aachen, Germany

Publication History

  1. Published Online: 24 MAR 2004
  2. Published Print: 1 JUN 1998

ISBN Information

Print ISBN: 9783527295418

Online ISBN: 9783527601943

SEARCH

Keywords:

  • polycrystal elasticity;
  • polycrystal plasticity;
  • homogenization models;
  • constitutive models;
  • Voigt model;
  • Reuss model;
  • Hashin–Shtrikman homogenization;
  • Eshelby's inclusion approach;
  • Kroner's self-consistent approach;
  • Taylor full-constraints model;
  • Bishop–Hill polycrystal model;
  • Taylor relaxed-constraints models;
  • Sachs model;
  • statistical grain interaction model;
  • viscoplastic polycrystal modeling;
  • steels;
  • iron-aluminides;
  • FE simulation

Summary

This chapter contains sections titled:

  • Introduction and Fundamentals

  • Homogenization Models for Poly crystals

  • Constitutive Models for Polycrystals

  • Voigt Model of Homogeneous Elastic Strain

  • Reuss Model of Homogeneous Elastic Stress

  • Hashin–Shtrikman Homogenization for Polycrystal Elasticity

  • Eshelby's Inclusion Approach

  • Kroner's Self-Consistent Approach

  • Taylor Full-Constraints Model for Homogeneous Strain in Polycrystals

  • Bishop–Hill Polycrystal Model

  • Taylor Relaxed-Constraints Models

  • Sachs Model for Homogeneous Stress in Polycrystals

  • Statistical Grain Interaction Model

  • Viscoplastic Polycrystal Modeling

  • Generalized Self-Consistent Polycrystal Models

  • Simulation of Local Orientation Gradients by Use of Polycrystal Theory

  • Application of Polycrystal Models in Materials Science

  • Examples of Polycrystal Simulations in Materials Science

    • Simulation of the Elastic Constants of Steels

    • Comparison of Polycrystal Homogenization Approaches

    • Simulation of Textures in Iron-Aluminides

    • Combination of Texture and FE Simulation