7. Molecular Dynamics

  1. Dr. Dierk Raabe1,2

Published Online: 24 MAR 2004

DOI: 10.1002/3527601945.ch7

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

How to Cite

Raabe, D. (1998) Molecular Dynamics, in Computational Materials Science: The Simulation of Materials, Microstructures and Properties, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527601945.ch7

Author Information

  1. 1

    Department for Materials Science & Engineering, Carnegie Mellon University, Room 3317, Wean Hall, Pittsburgh, PA 15213-3890, USA

  2. 2

    Institut für Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstraße 14, 52056 Aachen, Germany

Publication History

  1. Published Online: 24 MAR 2004
  2. Published Print: 1 JUN 1998

ISBN Information

Print ISBN: 9783527295418

Online ISBN: 9783527601943

SEARCH

Keywords:

  • molecular dynamics;
  • interatomic potentials;
  • atomic systems;
  • equations of motion;
  • boundary;
  • chain dynamics;
  • simulation;
  • brittle fracture;
  • silicon interfaces;
  • thin film deposition;
  • grain boundaries

Summary

This chapter contains sections titled:

  • Introduction

  • Models of Interatomic Potentials

    • Introduction and Fundamentals

    • Empirical Pair Potentials and Weak Pseudopotentials

    • Isotropic Many-Body Pair-Functional Potentials

    • Shell Model

    • Bond Order Potentials

    • Tight-Binding Potentials

    • Local Electron Density Functional Theory

  • Equations of Motion for Atomic Systems

    • Fundamentals

    • Constant Pressure

    • Constant Temperature

  • Integration of the Equations of Motion

  • Boundary Conditions

  • Application of Molecular Dynamics in Materials Science

  • Examples of Molecular Dynamics Simulations in Materials Science

    • Simulation of Chain Dynamics in Polymers

    • Simulation of Brittle Fracture

    • Simulation of Wafer Bonded Silicon Interfaces

    • Simulation of Void Formation during Thin Film Deposition

    • Simulation of Interaction of Dislocations with Grain Boundaries