9.1–9.3. Discrete Dislocation Statics and Dynamics: Sections 9.1–9.3

  1. Dr. Dierk Raabe1,2

Published Online: 24 MAR 2004

DOI: 10.1002/3527601945.ch9a

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

Computational Materials Science: The Simulation of Materials, Microstructures and Properties

How to Cite

Raabe, D. (1998) Discrete Dislocation Statics and Dynamics: Sections 9.1–9.3, in Computational Materials Science: The Simulation of Materials, Microstructures and Properties, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527601945.ch9a

Author Information

  1. 1

    Department for Materials Science & Engineering, Carnegie Mellon University, Room 3317, Wean Hall, Pittsburgh, PA 15213-3890, USA

  2. 2

    Institut für Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstraße 14, 52056 Aachen, Germany

Publication History

  1. Published Online: 24 MAR 2004
  2. Published Print: 1 JUN 1998

ISBN Information

Print ISBN: 9783527295418

Online ISBN: 9783527601943

SEARCH

Keywords:

  • dislocation statics;
  • dislocation dynamics;
  • linear elasticity theory;
  • crystal plasticity;
  • Hooke's law;
  • Green's tensor function;
  • Airy's scalar stress function

Summary

This chapter contains sections titled:

  • Introduction

  • Linear Elasticity Theory for Crystal Plasticity

    • Introduction

    • General Concepts of Elasticity Theory

    • Equilibrium Equations

    • Compatibility Equations

    • Hooke's Law — the Linear Relationship between Stress and Strain

    • Elastic Energy

    • Green's Tensor Function in Elasticity Theory

    • Airy's Scalar Stress Function in Elasticity Theory

  • Dislocation Statics

    • Introduction

    • 2D Field Equations for Infinite Dislocations in an Isotropic Linear Elastic Medium

    • 2D Field Equations for Infinite Dislocations in an Anisotropic Linear Elastic Medium

    • 3D Field Equations for Dislocation Segments in an Isotropic Linear Elastic Medium

    • 3D Field Equations for Dislocation Segments in an Anisotropic Linear Elastic Medium