Cyclic Deformation Behaviour and Possibilities for Enhancing the Fatigue Properties of Ultrafine-Grained Metals

  1. Prof. Dr. Michael Zehetbauer3 and
  2. Prof. Ruslan Z. Valiev4
  1. H. W. Höppel1,
  2. C. Xu2,
  3. M. Kautz1,
  4. N. Barta-Schreiber1,
  5. T.G. Langdon2 and
  6. H. Mughrabi1

Published Online: 28 JAN 2005

DOI: 10.1002/3527602461.ch12b

Nanomaterials by Severe Plastic Deformation

Nanomaterials by Severe Plastic Deformation

How to Cite

Höppel, H. W., Xu, C., Kautz, M., Barta-Schreiber, N., Langdon, T.G. and Mughrabi, H. (2004) Cyclic Deformation Behaviour and Possibilities for Enhancing the Fatigue Properties of Ultrafine-Grained Metals, in Nanomaterials by Severe Plastic Deformation (eds M. Zehetbauer and R. Z. Valiev), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527602461.ch12b

Editor Information

  1. 3

    Institut für Materialphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria

  2. 4

    Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marks Str., Ufa, 450 000, Russia

Author Information

  1. 1

    Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

  2. 2

    University of Southern California, Los Angeles, U.S.A.

Publication History

  1. Published Online: 28 JAN 2005
  2. Published Print: 25 FEB 2004

ISBN Information

Print ISBN: 9783527306596

Online ISBN: 9783527602469

SEARCH

Keywords:

  • cyclic deformation behaviour;
  • enhancing the fatigue properties;
  • ultrafine-grained metals;
  • superplastic forming capability;
  • MEMS devices;
  • equal-channel angular pressing (ECAP)

Summary

Refining the grain size of metallic materials is of high technological relevance. Not only is a strongly increased monotonic strength, an enhanced superplastic forming capability and a partially increased fatigue resistance achievable but, in addition, ultrafine-grained (UFG) materials are also necessary for the realisation of new, miniaturised (electromechanical) (MEMS) devices with predictable as well as reliable mechanical properties. For these reasons, severe plastic deformation methods, for example Lowe and Valiev [1], and in particular the Equal-Channel Angular Pressing (ECAP) process, for example Segal [2, 3], have attracted considerable attention in recent years [4–8].