Low Temperature Strain Rate Sensitivity of Some Nanostructured Metals

  1. Prof. Dr. Michael Zehetbauer3 and
  2. Prof. Ruslan Z. Valiev4
  1. E.D. Tabachnikova1,
  2. V. Z. Bengus1,
  3. V.D. Natsik1,
  4. A.V. Podolskii1,
  5. S. N. Smirnov1,
  6. R.Z. Valiev2,
  7. V.V. Stolyarov2 and
  8. I.V. Alexandrov2

Published Online: 28 JAN 2005

DOI: 10.1002/3527602461.ch3p

Nanomaterials by Severe Plastic Deformation

Nanomaterials by Severe Plastic Deformation

How to Cite

Tabachnikova, E.D., Bengus, V. Z., Natsik, V.D., Podolskii, A.V., Smirnov, S. N., Valiev, R.Z., Stolyarov, V.V. and Alexandrov, I.V. (2004) Low Temperature Strain Rate Sensitivity of Some Nanostructured Metals, in Nanomaterials by Severe Plastic Deformation (eds M. Zehetbauer and R. Z. Valiev), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527602461.ch3p

Editor Information

  1. 3

    Institut für Materialphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria

  2. 4

    Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marks Str., Ufa, 450 000, Russia

Author Information

  1. 1

    B. Verkin Inst. for Low Temperature Physics & Engineering, Ukraine Academy of Sciences, Kharkov, Ukraine

  2. 2

    Institute of Physics of Advanced Materials, Ufa, Russia

Publication History

  1. Published Online: 28 JAN 2005
  2. Published Print: 25 FEB 2004

ISBN Information

Print ISBN: 9783527306596

Online ISBN: 9783527602469

SEARCH

Keywords:

  • low temperature strain rate sensitivity;
  • ultrafine-grained metals;
  • nanostructured metals (NSM);
  • equal-channel angular pressing (ECAP)

Summary

Ultrafine-grained (nanostructured) metals (NSM) with 100–300 nm mean grains manufactured under intensive deformation by the equal-channel angular pressing (ECAP) are known for their high strength and plasticity at low temperatures (300–4.2 K) and are therefore promising structural materials for cryogenic applications [1]. It was found [2,3] that under low temperature deformation the grain sizes decreased in nanostructured (NS) Ti and NS Cu from ∼15 µm to 100 nm and the yield stresses increased 5 to 6 times. The work hardening was less pronounced (as compared to polycrystalline samples) in the stress-strain curves.