Chapter 2. Schemes of Quantum Computations with Trapped Ions

  1. Prof. Dr. Samuel L. Braunstein3,
  2. Dr. Hoi-Kwong Lo4 and
  3. Pieter Kok Assistant Editor3
  1. J. F. Poyatos1,2,
  2. J. I. Cirac1 and
  3. P. Zoller1

Published Online: 28 JAN 2005

DOI: 10.1002/3527603182.ch2

Scalable Quantum Computers: Paving the Way to Realization

Scalable Quantum Computers: Paving the Way to Realization

How to Cite

Poyatos, J. F., Cirac, J. I. and Zoller, P. (2000) Schemes of Quantum Computations with Trapped Ions, in Scalable Quantum Computers: Paving the Way to Realization (eds S. L. Braunstein, H.-K. Lo and P. Kok), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527603182.ch2

Editor Information

  1. 3

    University of Wales, Bangor, UK

  2. 4

    MagiQ Technologies, Inc., New York, USA

Author Information

  1. 1

    Institute für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria

  2. 2

    Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, U.K.

Publication History

  1. Published Online: 28 JAN 2005
  2. Published Print: 20 DEC 2000

ISBN Information

Print ISBN: 9783527403219

Online ISBN: 9783527603183

SEARCH

Keywords:

  • quantum computation;
  • quantum computing;
  • trapped ions;
  • cold trapped ions;
  • hot trapped ions

Summary

The purpose of this article is to review two complementary schemes for quantum computation with trapped ions. We initially discuss the first proposal of quantum computations with cold trapped ions (J. I. Cirac and P. Zoller; Phys. Rev. Lett. 74, 4091, 1995) which requires, prior to any computation, laser cooling to the motional ground state. This proposal is closely related to the physics of generating and manipulating N-particles entangled states in both ion traps and high-Q cavities (cavity quantum electrodynamics). The second scheme is that of quantum computations with hot trapped ions (J. F. Poyatos, J. I. Cirac and P. Zoller; Phys. Rev. Lett. 81, 1322, 1998) which works at finite temperature and resembles physical ideas found in atom interferometry.