Chapter 8. NMR Based Quantum Information Processing: Achievements and Prospects

  1. Prof. Dr. Samuel L. Braunstein6,
  2. Dr. Hoi-Kwong Lo7 and
  3. Pieter Kok Assistant Editor6
  1. D. G. Cory1,
  2. N. Boulant1,
  3. G. Boutis1,
  4. E. Fortunato1,
  5. M. Pravia1,
  6. Y. Sharf1,
  7. R. Laflamme2,
  8. E. Knill2,
  9. R. Martinez2,
  10. C. Negrevergne2,
  11. W. H. Zurek2,
  12. T. F. Havel3,
  13. L. Viola4,
  14. S. Lloyd4,
  15. Y. S. Weinstein4 and
  16. G. Teklemariam5

Published Online: 28 JAN 2005

DOI: 10.1002/3527603182.ch8

Scalable Quantum Computers: Paving the Way to Realization

Scalable Quantum Computers: Paving the Way to Realization

How to Cite

Cory, D. G., Boulant, N., Boutis, G., Fortunato, E., Pravia, M., Sharf, Y., Laflamme, R., Knill, E., Martinez, R., Negrevergne, C., Zurek, W. H., Havel, T. F., Viola, L., Lloyd, S., Weinstein, Y. S. and Teklemariam, G. (2000) NMR Based Quantum Information Processing: Achievements and Prospects, in Scalable Quantum Computers: Paving the Way to Realization (eds S. L. Braunstein, H.-K. Lo and P. Kok), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527603182.ch8

Editor Information

  1. 6

    University of Wales, Bangor, UK

  2. 7

    MagiQ Technologies, Inc., New York, USA

Author Information

  1. 1

    Dept. of Nuclear Engineering, MIT, Cambridge, MA 02139, USA

  2. 2

    Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

  3. 3

    BCMP, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA

  4. 4

    Dept. of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

  5. 5

    Dept. of Physics, MIT, Cambridge, MA 02139, USA

Publication History

  1. Published Online: 28 JAN 2005
  2. Published Print: 20 DEC 2000

ISBN Information

Print ISBN: 9783527403219

Online ISBN: 9783527603183



  • quantum computing;
  • NMR based quantum information processing;
  • quantum information processing (QIP)


Nuclear magnetic resonance (NMR) provides an experimental setting to explore physical implementations of quantum information processing (QIP). Here we introduce the basic background for understanding applications of NMR to QIP and explain their current successes, limitations and potential. NMR spectroscopy is well known for its wealth of diverse coherent manipulations of spin dynamics. Ideas and instrumentation from liquid state NMR spectroscopy have been used to experiment with QIP. This approach has carried the field to a complexity of about 10 qubits, a small number for quantum computation but large enough for observing and better understanding the complexity of the quantum world. While liquid state NMR is the only present-day technology about to reach this number of qubits, further increases in complexity will require new methods. We sketch one direction leading towards a scalable quantum computer using spin 1/2 particles. The next step of which is a solid state NMR-based QIP capable of reaching 10–30 qubits.


  • Introduction

  • Quantum Simulation as a General Approach to Quantum Information Processors

    • Qubit

    • Initial state

    • Dynamical control

    • Noise control

    • Measurement

  • Introduction to Liquid State NMR

    • Qubits in NMR

    • Hamiltonians

    • Unitary gates

      • No-operation

      • Control-not

    • Measurement

    • Non-unitary operations

    • Pseudo-pure states

    • Achievements of liquid state NMR QIP

  • Limitations of Liquid State NMR QIP

  • Introduction to Solid State NMR

  • Next Generation QIP Based on Solid State NMR

    • General scheme

    • Requirements

      • Scalable mapping

      • State preparation

      • Gates

      • Noise

      • Measurement

  • Future Generations QIP Based on Engineered Control of Spin Systems

  • Conclusion