Phase Transformations and Microstructural Evolution in Aluminium-Containing TRIP Steels

  1. Prof. Dr. P. Neumann3,
  2. Dr. D. Allen4 and
  3. Prof. Dr. E. Teuckhoff5
  1. Lie Zhao1,
  2. Jilt Sietsma2 and
  3. Sybrand van der Zwaag1,2

Published Online: 5 JAN 2006

DOI: 10.1002/3527606181.ch14

Steels and Materials for Power Plants, Volume 7

Steels and Materials for Power Plants, Volume 7

How to Cite

Zhao, L., Sietsma, J. and van der Zwaag, S. (2000) Phase Transformations and Microstructural Evolution in Aluminium-Containing TRIP Steels, in Steels and Materials for Power Plants, Volume 7 (eds P. Neumann, D. Allen and E. Teuckhoff), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527606181.ch14

Editor Information

  1. 3

    Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

  2. 4

    ABB Asltom Power UK Ltd., Cambridge Road, Whetstone, Leicester LE9 GLH, United Kingdom

  3. 5

    Siemens AG, Postfach 3240, 91050 Erlangen, Germany

Author Information

  1. 1

    Netherlands Institute for Metals Research, Delft, The Netherlands

  2. 2

    Laboratory for Materials Science, TU Delft, Delft, The Netherlands

Publication History

  1. Published Online: 5 JAN 2006
  2. Published Print: 27 JUN 2000

Book Series:

  1. EUROMAT 99

ISBN Information

Print ISBN: 9783527301959

Online ISBN: 9783527606184

SEARCH

Keywords:

  • steels for power plants;
  • materials for power plant;
  • phase transformations;
  • microstructural evolution;
  • aluminium-containing TRIP steels

Summary

Aluminium-containing transformation induced plasticity (TRIP) steels containing 0.2 wt.% carbon and 1.5 wt.% manganese and a variable aluminium concentration, ranging from 0.96 wt.% to 1.8 wt.%, are investigated. The phase transformation and microstructural evolution during austempering at 400 °C after intercritical annealing are studied using optical microscopy and X-ray diffraction. It is found that after austempering for an optimized time (1 or 3 min), the volume fraction of retained austenite is approximately 10% with a carbon concentration of approximately 1.6%. The mechanism of austenite retention is discussed. It is concluded that the microstructure in the aluminium-containing steels is expected to lead to a significant TRIP effect.