Fine Particle Atomization Technology

  1. Prof. J. V. Wood2,
  2. Prof. Dr. L. Schultz3 and
  3. Prof. Dr. D. M. Herlach4
  1. Jack Hamill and
  2. Christopher Schade

Published Online: 25 APR 2006

DOI: 10.1002/3527607277.ch40

Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, Volume 8

Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, Volume 8

How to Cite

Hamill, J. and Schade, C. (2000) Fine Particle Atomization Technology, in Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, Volume 8 (eds J. V. Wood, L. Schultz and D. M. Herlach), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527607277.ch40

Editor Information

  1. 2

    University of Nottingham, Division of Materials, Nottingham NG7 2RD, United Kingdom

  2. 3

    Institut für Festkorper- und Werkstofforschung Dresden e.V., Postfach 270016, 01171 Dresden, Germany

  3. 4

    Deutsches Zentrum für Luft- und Raumfahrt e.V., Linder Hohe, 51170 Köln, Germany

Author Information

  1. Hoeganaes Corporation Cinnaminson, New Jersey USA

Publication History

  1. Published Online: 25 APR 2006
  2. Published Print: 27 JUN 2000

Book Series:

  1. EUROMAT 99

ISBN Information

Print ISBN: 9783527301935

Online ISBN: 9783527607273

SEARCH

Keywords:

  • fine particle atomization technology

Summary

Development efforts focused on both metallurgical and water atomization techniques to produce iron and alloy powders for a growing number of applications. The major objectives included an average particle size distribution of ≤ 20 μm, near-spherical shape control, tap densities ≥ 4.0 g/cm3, along with sufficient process flexibility to satisfy a number of additional performance characteristics. Fine particle growth opportunities include metal injection molding, rheological fluids, and sintering activators.