ORMOCER®s for Optical Interconnection Technology

  1. Dr. K. Grassie4,
  2. Prof. Dr. E. Teuckhoff5,
  3. Prof. Dr. G. Wegner6,
  4. Prof. Dr. J. Hausselt7 and
  5. Prof. Dr. H. Hanselka8
  1. R. Buestrich1,
  2. F. Kahlenberg1,
  3. M. Popall1,
  4. P. Dannberg2,
  5. R. Müller- Fiedler3 and
  6. O. Rösch3

Published Online: 27 APR 2006

DOI: 10.1002/3527607420.ch54

Functional Materials, Volume 13

Functional Materials, Volume 13

How to Cite

Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Müller- Fiedler, R. and Rösch, O. (2000) ORMOCER®s for Optical Interconnection Technology, in Functional Materials, Volume 13 (eds K. Grassie, E. Teuckhoff, G. Wegner, J. Hausselt and H. Hanselka), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527607420.ch54

Editor Information

  1. 4

    Philips Forschungslaboratorium, Postfach 500145, 52085 Aachen, Germany

  2. 5

    Siemens AG, Postfach 3240, 91050 Erlangen, Germany

  3. 6

    Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

  4. 7

    Forschungszentrum Karlsruhe, Postfach 3640, 76201 Karlsruhe, Germany

  5. 8

    Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39160 Magdeburg, Germany

Author Information

  1. 1

    Fraunhofer Institut für Silicatforschung, Würzburg, Germany

  2. 2

    Fraunhofer Institut Angewandte Optik und Feinmechanik, Jena, Germany

  3. 3

    Robert Bosch GmbH, FV/FLD, Stuttgart, Germany

Publication History

  1. Published Online: 27 APR 2006
  2. Published Print: 27 JUN 2000

Book Series:

  1. EUROMAT 99

ISBN Information

Print ISBN: 9783527302543

Online ISBN: 9783527607426



  • functional materials;
  • ORMOCER®s;
  • optical interconnection technology


New inorganic-organic hybrid polymers (ORMOCER®s) for integrated optical and optoelectronic devices were synthesized by sol-gel processing of functionalized alkoxysilanes. Process parameters (catalyst, temperature etc.) were optimized to achieve highly reproducible low cost materials which are photopatternable even in higher layer thickness (presently 100 µm within one step).

The resulting materials have low optical losses at the most important wavelengths for telecommunication in the NIR range (0.2 dB/cm at 1310 nm, 0.5 dB/cm at 1550 nm) and a variety of additional advantageous properties for optical interconnection technology and production of opto-electronic devices: good wetting and adhesion on various substrates (e.g. glass, silicon and several polymers), low processing temperatures (postbake at 160 °C) and high thermal stability (decomposition at 270 °C) compared to alternative opto-polymers for NIR applications. A further advantage is a tunable refractive index, which can be achieved by mixing different resins.