New Joining Technique for Silicon Components at Low Temperature

  1. Dr. K. Grassie3,
  2. Prof. Dr. E. Teuckhoff4,
  3. Prof. Dr. G. Wegner5,
  4. Prof. Dr. J. Hausselt6 and
  5. Prof. Dr. H. Hanselka7
  1. Jens Mehlich1,
  2. Hans-Gerd Busmann1,
  3. Kai Burdorf2 and
  4. Wolfgang Benecke2

Published Online: 27 APR 2006

DOI: 10.1002/3527607420.ch9

Functional Materials, Volume 13

Functional Materials, Volume 13

How to Cite

Mehlich, J., Busmann, H.-G., Burdorf, K. and Benecke, W. (2000) New Joining Technique for Silicon Components at Low Temperature, in Functional Materials, Volume 13 (eds K. Grassie, E. Teuckhoff, G. Wegner, J. Hausselt and H. Hanselka), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527607420.ch9

Editor Information

  1. 3

    Philips Forschungslaboratorium, Postfach 500145, 52085 Aachen, Germany

  2. 4

    Siemens AG, Postfach 3240, 91050 Erlangen, Germany

  3. 5

    Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

  4. 6

    Forschungszentrum Karlsruhe, Postfach 3640, 76201 Karlsruhe, Germany

  5. 7

    Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39160 Magdeburg, Germany

Author Information

  1. 1

    Fraunhofer Institute for Manufacturing and Advanced Materials, Bremen, Germany

  2. 2

    Institute for Microsensors, -actuators and –systems, University of Bremen, Germany

Publication History

  1. Published Online: 27 APR 2006
  2. Published Print: 27 JUN 2000

Book Series:

  1. EUROMAT 99

ISBN Information

Print ISBN: 9783527302543

Online ISBN: 9783527607426

SEARCH

Keywords:

  • functional materials;
  • highly sinter-active gold deposits as binding agent;
  • Au-powder;
  • joining technique for silicon components at low temperature

Summary

Conventionally, silicon parts are bonded to substrates at fairly high temperatures. This does not satisfy the demand of future micro devices. Therefore, a new joining process at low temperature (< 150 °C) has been developed using highly sinter-active gold deposits as binding agent.

The surfaces have been coated with nanoscaled Au-powder. Subsequently, the parts to be joined were pressed at room temperature for a few minutes. At 300 MPa pressure, interfacial layer with nearly 100% density are formed that connect both parts and ensure high electric and thermal conductivity across the bond. The bonds are mechanically stable during dicing and may carry high electric current.