Standard Article

You have free access to this content

Software Aging and Rejuvenation

  1. Kishor S. Trivedi1,
  2. Kalyanaraman Vaidyanathan2

Published Online: 14 DEC 2007

DOI: 10.1002/9780470050118.ecse394

Wiley Encyclopedia of Computer Science and Engineering

Wiley Encyclopedia of Computer Science and Engineering

How to Cite

Trivedi, K. S. and Vaidyanathan, K. 2007. Software Aging and Rejuvenation. Wiley Encyclopedia of Computer Science and Engineering. .

Author Information

  1. 1

    Duke University, Durham, North Carolina

  2. 2

    Scalable Systems Group, Sun Microsystems, Inc., San Diego, California

Publication History

  1. Published Online: 14 DEC 2007

Bibliography

  1. Bibliography
  2. Further Reading
  • 1
    J. Gray and D. P. Siewiorek, High-availability computer systems, IEEE Computer, 1991, pp. 3948.
  • 2
    M. Sullivan and R. Chillarege, Software defects and their impact on system availability – A study of field failures in operating systems, Proc. 21st IEEE Int'l. Symposium on Fault-Tolerant Computing, 1991, pp. 29.
  • 3
    S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, A methodology for detection and estimation of software aging, Proc. of 9th Int'l. Symposium on Software Reliability Engineering, Paderborn, Germany, 1998, pp. 282292.
  • 4
    Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software rejuvenation: Analysis, module and applications, Proc. of 25th Symposium on Fault Tolerant Computing, FTCS-25, Pasadena, California, 1995, pp. 381390.
  • 5
    S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, Does code decay? Assessing the evidence from change management data, IEEE Trans. Software Eng., 27(1): 112, 2001.
  • 6
    D. L. Parnas, Software Aging, Proc. 16th Int'l. Conf. on Software Engineering, Sorrento, Italy, 1994, pp. 279287.
  • 7
  • 8
    Y. Bao, X. Sun, and K. Trivedi, A workload-based analysis of software aging and rejuvenation, IEEE Trans. Reliability, 54(3): 541548, 2005.
  • 9
    L. Bernstein, Text of Seminar Delivered by Mr. Bernstein. University Learning Center, George Mason University, January 29, 1996.
  • 10
    A. Avritzer and E. J. Weyuker, Monitoring Smoothly Degrading Systems for Increased Dependability. Empirical Software Eng. J., 2(1): 5977, 1997.
  • 11
    A. T. Tai, S. N. Chau, L. Alkalaj, and H. Hecht, On-board preventive maintenance: Analysis of effectiveness and optimal duty period, 3rd Int'l. Workshop on Object Oriented Real-time Dependable Systems, Newport Beach, CA, 1997.
  • 12
    L. Bernstein and C. M. R. Kintala, Software Rejuvenation. CrossTalk – J. Defense Software Eng., August 2004.
  • 13
    E. Marshall, Fatal error: How patriot overlooked a scud, Science, 1347, 1992.
  • 14
    V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan, and W. Zeggert, Proactive management of software aging, IBM J. R&D, 45(2): 2001.
  • 15
    IBM Netfinity Director Software Rejuvenation – White Paper, Research Triangle Park, NC: IBM Corp., Jan. 2001.
  • 16
    K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi, Analysis and implementation of software rejuvenation in cluster systems, Proc. of the Joint Int'l. Conference on Measurement and Modeling of Computer Systems, ACM SIGMETRICS 2001/Performance 2001, Cambridge, MA, 2001.
  • 17
    W. Xii, Y. Hong, and K. S. Trivedi, Software rejuvenation policies for cluster systems under varying workload, Proc. of Tenth Int'l. Pacific Rim Dependable Computing Symp., PRDC 2004, Papeete, Tahiti, French Polynesia, 2004.
  • 18
  • 19
    L. Li, K. Vaidyanathan, and K. S. Trivedi, An approach to estimation of software aging in a web server, Proc. of the Int'l. Symp. on Empirical Software Engineering, ISESE 2002, Nara, Japan, 2002.
  • 20
  • 21
    K. Cassidy, K. Gross, and A. Malekpour, Advanced pattern recognition for detection of complex software aging in online transaction processing servers, Proc. of DSN 2002, Washington D.C., 2002.
  • 22
    C. Fetzer and K. Hostedt, Rejuvenation and failure detection in partitionable systems, Proc. of the Pacific Rim Int'l. Symposium on Dependable Computing, PRDC 2001, Seoul, South Korea, 2001.
  • 23
    Y. Liu, Y. Ma, J. J. Han, H. Levendel, and K. S. Trivedi, Modeling and analysis of software rejuvenation in cable modem termination system, Proc. of the Int'l. Symp. on Software Reliability Engineering, ISSRE 2002, Annapolis, MD, 2002.
  • 24
    T. Boyd and P. Dasgupta, Premptive module replacement using the virtualizing operating system, Proc. of the Workshop on Self-Healing, Adaptive and Self-Managed Systems, SHAMAN 2002, New York, NY, 2002.
  • 25
    Y. Hong, D. Chen, L. Li, and K. S. Trivedi, Closed loop design for software rejuvenation, Proc. of the Workshop on Self-Healing, Adaptive and Self-Managed Systems, SHAMAN 2002, New York, NY, 2002.
  • 26
    G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, Microreboot, A technique for cheap recovery, Proc. 6th Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, CA, 2004.
  • 27
    S. Garg, A. Puliafito, and K. S. Trivedi, Analysis of software rejuvenation using markov regenerative stochastic petri net, Proc. of the Sixth Int'l. Symposium on Software Reliability Engineering, Toulouse, France, 1995, pp. 180187.
  • 28
    S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, Time and load based software rejuvenation: Policy, evaluation and optimality, Proc. of the First Fault-Tolerant Symposium, Madras, India, 1995.
  • 29
    S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, Minimizing completion time of a program by checkpointing and rejuvenation, Proc. 1996 ACM SIGMETRICS Conference, Philadelphia, PA, 1996, pp. 252261.
  • 30
    A. Pfening, S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, Optimal rejuvenation for tolerating soft failures, Perform. Eval., 27 & 28: 491506, 1996.
  • 31
    S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, Analysis of preventive maintenance in transactions based software systems, IEEE Trans. Comput., 47(1): 96107, 1998.
  • 32
    A. Bobbio, A. Sereno, and C. Anglano, Fine grained software degradation models for optimal rejuvenation policies, Perform. Eval., 46: 4562, 2001.
  • 33
    T. Dohi, K. Goseva–Popstojanova, and K. S. Trivedi, Analysis of software cost models with rejuvenation, Proc. of the 5th IEEE International Symposium on High Assurance Systems Engineering, HASE 2000, Albuquerque, NM, 2000.
  • 34
    T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, Statistical Non-Parametric Algorithms to Estimate the Optimal Software Rejuvenation Schedule, Proc. of the 2000 Pacific Rim International Symposium on Dependable Computing, PRDC 2000, Los Angeles, CA, 2000.
  • 35
    K. S. Trivedi, Probability and Statistics, with Reliability, Queuing and Computer Science Applications, 2nd ed., New York: Wiley, 2001.
  • 36
    C. Hirel, B. Tuffin, and K. S. Trivedi, SPNP: Stochastic Petri Net Package. Version 6.0. B. R. Haverkort et al. (eds.), TOOLS 2000, Lecture notes in computer science 1786, Heidelberg: Springer-Verlag, 2000, pp. 354357.
  • 37
    K. Vaidyanathan and K. S. Trivedi, A measurement-based model for estimation of resource exhaustion in operational software systems, Proc. of the Tenth IEEE Int'l. Symposium on Software Reliability Engineering, Boca Raton, Florida, 1999, pp. 8493.
  • 38
    K. Vaidyanathan and K. S. Trivedi, A comprehensive model for software rejuvenation, IEEE Trans. on Dependable and Secure Computing, Apr. 2005 (in press).
  • 39
    K. S. Trivedi, J. Muppala, S. Woolet, and B. R. Haverkort, Composite performance and dependability analysis, Perform. Eval., 14(3–4): 197216, 1992.
  • 40
    R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications, New York: Springer-Verlag, 2000.

Further Reading

  1. Bibliography
  2. Further Reading