Chapter 9. Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs

  1. El-Ghazali Talbi
  1. Makoto Yamashita1,
  2. Katsuki Fujisawa2,
  3. Mituhiro Fukuda3,
  4. Masakazu Kojima3 and
  5. Kazuhide Nakata4

Published Online: 10 APR 2006

DOI: 10.1002/9780470053928.ch9

Parallel Combinatorial Optimization

Parallel Combinatorial Optimization

How to Cite

Yamashita, M., Fujisawa, K., Fukuda, M., Kojima, M. and Nakata, K. (2006) Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs, in Parallel Combinatorial Optimization (ed E.-G. Talbi), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470053928.ch9

Editor Information

  1. LIFL—University of Lille—INRIA—CNRS, Bat.M3 Cité Scientifique, 59655 Villeneuve d'Ascq, France

Author Information

  1. 1

    Shindow Laboratory—Department of Industrial Management and Science, Kanagawa University, Japan

  2. 2

    Department of Mathematical sciences, Tokyo Denki University, Ishizaka, Hatoyama, Saitama, 350-0394, Japan

  3. 3

    Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1-W8-29 Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan

  4. 4

    Department of Industrial Engineering and Management, Tokyo Institute of Technology, 2-12-1-W8-29 Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan

Publication History

  1. Published Online: 10 APR 2006
  2. Published Print: 13 OCT 2006

Book Series:

  1. Wiley Series on Parallel and Distributed Computing

Book Series Editors:

  1. Albert Y. Zomaya

ISBN Information

Print ISBN: 9780471721017

Online ISBN: 9780470053928

SEARCH

Keywords:

  • parallel primal-dual interior-point for semidefinite programs;
  • algorithmic framework and parallel implementation;
  • ELEMENTS and CHOLESKY components - SDPARA

Summary

This chapter contains sections titled:

  • Introduction

  • How to Use the SDPARA and the SDPARA-C

  • Algorithmic Framework and Parallel Implementation

  • Numerical Results

  • Future Directions

  • References