Chapter 32. Nano-Diamond Enhanced Silicon Carbide Matrix Composites

  1. John B. Wachtman Jr
  1. P. Darrell Ownby and
  2. Jenq Liu

Published Online: 28 MAR 2008

DOI: 10.1002/9780470313831.ch32

Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2: Ceramic Engineering and Science Proceedings, Volume 12, Issue 7/8

Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2: Ceramic Engineering and Science Proceedings, Volume 12, Issue 7/8

How to Cite

Ownby, P. D. and Liu, J. (1991) Nano-Diamond Enhanced Silicon Carbide Matrix Composites, in Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2: Ceramic Engineering and Science Proceedings, Volume 12, Issue 7/8 (ed J. B. Wachtman), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470313831.ch32

Author Information

  1. Ceramic Engineering Department University of Missouri-Rolla Rolla, MO 65401

Publication History

  1. Published Online: 28 MAR 2008
  2. Published Print: 1 JAN 1991

ISBN Information

Print ISBN: 9780470375099

Online ISBN: 9780470313831

SEARCH

Keywords:

  • polytype;
  • thermal;
  • matrix;
  • carbide;
  • ultrasonic

Summary

The fracture toughness, KIC, of polycrystalline silicon carbide is shown to be increased more than 100%, up to 7.17 MPa·m1/2, by the addition of dispersed nano-diamond particles. This KIC increase is critically dependent on the volume percent and the particle size of the diamond particle. The extremely small size of these isolated diamonds represents, by several orders of magnitude, the smallest particulate toughening agent added as a dispersed powder, as opposed to internal nucleation, ever reported. The toughening mechanisms which are considered are transformation toughening, microcrack toughening, and crack deflection. The significance of the non-cubic diamond polytypes in transformation toughening is discussed. Quantitative analysis of the hexagonal and cubic polytype distribution by Rietveld powder X-ray diffraction profile fitting of the explosively produced diamond of the type used for toughening enhancement is reported. Besides increasing the fracture toughness, the added diamond increases the thermal conductivity by 70% according to theory. It is also expected that the ΔT required to thermal shock the carbide will also be increased. Work is continuing to measure these and other physical properties of these unique composites.