T

  1. Randall M. German Ph.D., M.S., B.S. Chair Professor Director and
  2. Seong Jin Park Ph.D. Associate Research Professor

Published Online: 7 JAN 2008

DOI: 10.1002/9780470370087.ch20

Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals

Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals

How to Cite

German, R. M. and Park, S. J. (2008) T, in Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470370087.ch20

Author Information

  1. Center for Advanced Vehicular Systems at Mississippi State University, Mississippi State, USA

Publication History

  1. Published Online: 7 JAN 2008
  2. Published Print: 27 AUG 2008

ISBN Information

Print ISBN: 9780470173640

Online ISBN: 9780470370087

SEARCH

Keywords:

  • temperature adjustments for equivalent sintering;
  • third-stage sintering densification;
  • transverse-rupture strength

Summary

This chapter contains sections titled:

  • Tap Density—See Vibration-induced Particle Packing

  • Temperature Adjustments for Equivalent Sintering

  • Temperature Dependence—See Arrhenius Relation

  • Terminal Density—See Final-stage Sintering Limited Density

  • Terminal Neck Size—See Neck Growth Limited by Grain Growth

  • Terminal Neck Size in Sintering—See Limiting Neck Size

  • Terminal Pore Size—See Final-stage Pore Size

  • Terminal Settling Velocity—See Stokes' Law

  • Terminal Sintering—See Trapped-gas Pore Stabilization

  • Terminal Velocity—See Acceleration of Free-settling Particles

  • Tetrakaidecahedron

  • Theoretical Density for Mixed Powders—See Mixture Theoretical Density

  • Thermal Conduction—See Conductive Heat Flow

  • Thermal Conductivity

  • Thermal Conductivity Dependence on Porosity

  • Thermal Conductivity from Electrical Conductivity

  • Thermal Convection—See Convective Heat Transfer

  • Thermal Debinding—See Polymer Pyrolysis and Vacuum Thermal Debinding

  • Thermal Debinding Master Curve—See Master Decomposition Curve

  • Thermal Debinding Time

  • Thermal Diffusivity—See Thermal Conductivity

  • Thermal Expansion Coefficient

  • Thermally Activated—See Arrhenius Relation

  • Thermal Shock Resistance

  • Theta Test

  • Third-stage Sintering Densification—See Final-stage Densification

  • Third-stage Sintering Stress—See Final-stage Sintering Stress, Sintering Stress in Final-stage Sintering for Small Grains and Faceted Pores, Sintering Stress in Final-stage Sintering for Small Grains and Rounded Pores, and Sintering Stress in Final-stage Sintering for Spherical Pores Inside Grains

  • Three-point Bending Strength—See Transverse-rupture Strength

  • Three-point Bending Test—See Bending Test

  • Time for Thermal Debinding—See Thermal Debinding Time

  • Time to Solidify in Atomization—See Solidification Time

  • Time to Spheroidize in Atomization—See Spheroidization Time

  • Tool Expansion Factor

  • Tortuosity—See Darcy's Law

  • Transformation Kinetics—See Avrami Equation

  • Transient Liquid-phase Sintering

  • Transverse-rupture Strength

  • Trapped-gas Pore Stabilization

  • Truncated Octahedron—See Tetrakaidecahedron

  • Two-dimensional Grain Contacts—See Connectivity

  • Two-particle Sintering Model—See Kuczynski Neck-growth Model

  • Two-particle Viscous-flow Sintering