Standard Article

You have free access to this content

Structural Organozinc Chemistry

Organozinc Compounds (2007)

  1. Johann T. B. H. Jastrzebski,
  2. Jaap Boersma,
  3. Gerard van Koten

Published Online: 15 DEC 2009

DOI: 10.1002/9780470682531.pat0365

Patai's Chemistry of Functional Groups

Patai's Chemistry of Functional Groups

How to Cite

Jastrzebski, J. T. B. H., Boersma, J. and van Koten, G. 2009. Structural Organozinc Chemistry. Patai's Chemistry of Functional Groups. .

Author Information

  1. Utrecht University, Debye Institute, Organic Chemistry and Catalysis, Utrecht, CH, The Netherlands

Publication History

  1. Published Online: 15 DEC 2009
original image

Figure 1. Some examples of observed (1 and 23) and proposed () structures of organozinc compounds containing a bridging aryl group

original image

Figure 2. Unit cell contents of 4 in the space group inline image

original image

Figure 3. Unit cell contents of 5 in the space group I41/a

original image

Figure 4. Unit cell contents of 6; atoms outside the cell are omitted for clarity

original image

Figure 5. Molecular geometry of 7 in the solid state

original image

Figure 6. Molecular geometries of 8b, 9b and 10 in the solid state

original image

Figure 7. Molecular geometry of 11 in the solid state

original image

Figure 8. Molecular geometry of the [(Me3SiCH2)3Zn] anion in 12

original image

Figure 9. Molecular geometries of the triorganozincate anions of 19 and 20

original image

Figure 10. Molecular geometries of the [(PhC[TRIPLE BOND]C)3Zn(THF)] and [(PhC[TRIPLE BOND]C)3Zn] anions as present in the asymmetric unit of 22

original image

Figure 11. Molecular geometry of 23 in the solid state

original image

Figure 12. Molecular geometry of the triarylzincate anions as present in 24, 25 and 26

original image

Figure 13. Molecular geometry of the dimeric units as present in the solid state structure of 27

original image

Figure 14. Molecular geometries of the heteroleptic triorganozincate anions present in 28 and 29

original image

Figure 15. Molecular geometry of the heteroleptic triorganozincate anion 31

original image

Figure 16. Molecular geometry of the neutral compound 32

original image

Figure 17. Molecular geometry of 33

original image

Figure 18. The dimeric heteroleptic zincate unit as present in the solid state of 34

original image

Figure 19. Molecular geometry of 35 in the solid state

original image

Figure 20. Molecular geometry of 39 in the solid state

original image

Figure 21. Molecular geometry of dimeric 43

original image

Figure 22. Structure in the solid state of 45

original image

Figure 23. Molecular geometry of 46 in the solid state

original image

Figure 24. Solid state structure of 48

original image

Figure 25. Molecular geometry of the heteroleptic diorganozinc compounds 49 and 50 in the solid state

original image

Figure 26. Dimeric structure of Ph2Zn (53) in the solid state

original image

Figure 27. Structures of the arylzinc compounds 54, 55 and 56 in the solid state

original image

Figure 28. Schematic structure of 57 in the solid state

original image

Figure 29. Part of the polymeric chain of 58 in the solid state. Note the disordered cyclopentadienyl groups bridging between zinc atoms of the same type

original image

Figure 30. Left, the crystallographic ‘disaster’ of 59. Right, disordered structure of 60 in the solid state

original image

Figure 31. Molecular geometry of 63 in the solid state

original image

Figure 32. Molecular geometry of 64 in the solid state

original image

Figure 33. Molecular geometry of 66 in the solid state

original image

Figure 34. Structure of macrocycle 67 in the solid state

original image

Figure 35. Molecular geometry of the (R,R)-diastereoisomer of 68 in the solid state

original image

Figure 36. Molecular geometry of the bis-iminophosphorane zinc compound 69

original image

Figure 37. Structure of [NC5H4C(SiMe3)2-2]2Zn (70)

original image

Figure 38. Molecular geometry of bis(benzoyloxymethyl)zinc (71) in the solid state

original image

Figure 39. Solid state structure of dimeric 72

original image

Figure 40. Cage-like structure of tetrameric 73 in the solid state

original image

Figure 41. Part of the polymeric structure of 74 in the solid state

original image

Figure 42. Molecular geometry of 75 in the solid state. Note that the CH2 groups of the coordinated THF molecules are omitted for clarity

original image

Figure 43. Solid state structure of coordination complex 76

original image

Figure 44. Molecular geometry of 80 in the solid state

original image

Figure 45. Structure of 83 in the solid state

original image

Figure 46. Solid state structures of 84 and 90

original image

Figure 47. Solid state structures of the organometallic rotaxanes 91 and 92

original image

Figure 48. Solid state structure of dimeric 93

original image

Figure 49. Polymeric structure of 94 in the solid state

original image

Figure 50. Part of the polymeric chain of coordination polymer 97

original image

Figure 51. Solid state structure of Me2Zn[(S,S)-ebpe] (107)

original image

Figure 52. Solid state structure of 113

original image

Figure 53. The [EtZn(OEt2)3]+ cationic part of the structure in the solid state of 114

original image

Figure 54. Cationic part of the solid state structure of 115

original image

Figure 55. Solid state structure of the cationic part of 116

original image

Figure 56. Proposed hetero-cubane structures for EtZnCl and EtZnBr

original image

Figure 57. Part of the polymeric structure of 117 in the solid state

original image

Figure 58. Solid state structure of EtZnCl(TMEDA) (118)

original image

Figure 59. Structure of arylzinc iodide 119 in the solid state

original image

Figure 60. The rotaxane structure of 120 in the solid state

original image

Figure 61. Solid state structure of 123

original image

Figure 62. Solid state structure of dimeric 125

original image

Figure 63. Solid state structure of dimeric 126

original image

Figure 64. Structure of dimeric 127 in the solid state

original image

Figure 65. Solid state structure of the RZnBr2Li(THF)2 aggregate 128

original image

Figure 66. Solid state structure of the dimeric cyclopentadienylzinc chloride (129)

original image

Figure 67. Solid state structure of the Reformatsky reagent [(t-BuO)OCCH2ZnBr(THF)]2 (130)

original image

Figure 68. Solid state structure of 131

original image

Figure 69. Solid state structure of carbenoid compound 132

original image

Figure 70. Solid state structure of monomeric guanidine complex 133

original image

Figure 71. Monomeric alkylzinc-oxygen compounds

original image

Figure 72. The three basic structural motifs observed for R1ZnOR2 compounds

original image

Figure 73. Solid state structures of dimeric 139 and 140

original image

Figure 74. Solid state structure of metalla-spirocyclic compound 141

original image

Figure 75. Enantiopure [MeZn(DAIB)]2 (142) and meso-[MeZn(DAIB)]2 (143)

original image

Figure 76. Exo-(2-aryl-substituted) fenchyl alcohols

original image

Figure 77. Dimeric heterochiral (144) and homochiral (145) MeZn fenchyl acoholates

original image

Figure 78. Alkylzinc alkoxides derived from functionalized pyrrolidinyl-2-methanol 146, 147, 148 and 2-pyridylmethanol 149

original image

Figure 79. Solid state structures of trimeric aggregates 150 and 151

original image

Figure 80. Alkylzinc alkoxides having a hetero-cubane structure

original image

Figure 81. Solid state structure of tetrameric methylzinc methoxide

original image

Figure 82. Structures of the hetero-cubanes 162, 163, 164, 165

original image

Figure 83. Solid state structures of compounds 166 and 167

original image

Figure 84. Schematic structures of 168 and 169

original image

Figure 85. Schematic structures of zinc enolates stabilized by intramolecular nitrogen coordination

original image

Figure 86. Solid state structure of 174

original image

Figure 87. Schematic structures of 175 and 176

original image

Figure 88. Solid state structure of acetate bridged organozinc dimer 177

original image

Figure 89. Schematic structures of 178, 179 and 180

original image

Figure 90. Schematic structures of the organozinc diketoiminates 181, 182, 183, 184, 185, 186, 187

original image

Figure 91. Part of the polymeric structure of 187

original image

Figure 92. Schematic structures of the methylzinc bis(iminophosphorane) compounds 188 and 189

original image

Figure 93. Schematic structures of organozinc pyrazolylhydroborato compounds

original image

Figure 94. Solid state structure of methylzinc tris(pyrazolyl)borato compound 190

original image

Figure 95. Schematic structures of 194, 195 and 196 in the solid state

original image

Figure 96. Solid state structure of 197

original image

Figure 97. Schematic representation of the structures of 198, 199, 200, 201, 202

original image

Figure 98. Schematic structures of organozinc amides 203, 204, 205, 206, 207, 208

original image

Figure 99. Solid state structure of 209

original image

Figure 100. Schematic structures of compounds 210, 211, 212, 213, 214

original image

Figure 101. Schematic structures of organozinc amides 215, 216, 217, 218

original image

Figure 102. Solid state structure of 219

original image

Figure 103. Schematic structures of the trimeric organozinc amides 220, 221, 222, 223

original image

Figure 104. Schematic structures of tetrameric organozinc phosphaneiminates 224, 225, 226, 227

original image

Figure 105. Solid state structure of the monomeric organozinc thiolate 228

original image

Figure 106. Schematic structures of dimeric organozinc thiolates 229, 230a, 230b, 231, 232

original image

Figure 107. Solid state structure of 231

original image

Figure 108. Basic arrangement of zinc and sulfur atoms in (MeZnSBu-t)5 (left) and (EtZnSEt)10 (right)

original image

Figure 109. Solid state structure of organozinc selenide 233

original image

Figure 110. Schematic structures of organozinc-phosphides and -arsenides 234, 235, 236, 237, 238, 239, 240, 241, 242

original image

Figure 111. Schematic structures of the organozinc phosphides 243, 244, 245

original image

Figure 112. Schematic structures of organozinc–transition metal compounds 246, 247, 248, 249

original image

Figure 113. Solid state structure of 250. Space filling model of 251. Solid state structure of 252

original image

Figure 114. Solid state structures of the organozinc–transition metal compounds 253, 254, 255. Note that in 254 and 255 the i-Pr groups at phosphorus are omitted for clarity

original image

Figure 115. Solid state structures of the organozinc–tantalum compounds 256 and 257

original image

Scheme 2.

original image

Scheme 4.

original image

Scheme 5.

original image

Scheme 6.

original image

Scheme 7.

original image

Scheme 8.

original image

Scheme 9.

original image

Scheme 10.

original image

Scheme 11.

original image

Scheme 12.