Chapter

You have free access to this content

23 Structural Equation Modeling

Research Methods in Psychology

IV. DATA ANALYSIS ISSUES

  1. Jodie B. Ullman PhD1,
  2. Peter M. Bentler PhD2

Published Online: 26 SEP 2012

DOI: 10.1002/9781118133880.hop202023

Handbook of Psychology, Second Edition

Handbook of Psychology, Second Edition

How to Cite

Ullman, J. B. and Bentler, P. M. 2012. Structural Equation Modeling. Handbook of Psychology, Second Edition. 2:IV:23.

Author Information

  1. 1

    California State University, Department of Psychology, San Bernardino, California, USA

  2. 2

    University of California, Department of Psychology, Los Angeles, California, USA

Publication History

  1. Published Online: 26 SEP 2012

References

  1. References
  • Aguinis, H., Pierce, C. A., & Culpepper, S. A. (2009). Scale coarseness as a methodological artifact: Correcting correlation coefficients attenuated from using coarse scales. Organizational Research Methods, 12(4), 623652.
  • Allison, P. (2003). Missing data techniques for structural equation modeling. Journal of Abnormal Psychology, 112(4), 545557.
  • An, X., & Bentler, P. M. (2011a). Nesting Monte Carlo EM for high dimensional item factor analysis. Under editorial review.
  • An, X., & Bentler, P. M. (2011b). Efficient direct sampling MCEM algorithm for latent variable models with binary responses. Computational Statistics and Data Analysis.
  • An, X., & Bentler, P. M. (2011c). Extended mixture factor analysis model with covariates for mixed binary and continuous responses. Statistics in Medicine. doi: 10.1002/sim.4310
  • Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16(3), 397438.
  • Bagozzi, R. P. (2007). On the meaning of formative measurement and how it differs from reflective measurement: Comment on Howell, Breivik, and Wilcox (2007). Psychological Methods, 12(2), 229237.
  • Barrett, P, (2007). Structural equation modeling: Adjudging model fit. Personality and Individual Differences, 42, 815824.
  • Bartholomew, D. J., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach (3rd ed.). Chichester, UK: Wiley.
  • Bauer, D. J. (2003). Estimating multilevel linear models as structural equation models. Journal of Educational and Behavioral Statistics, 28(2), 135167.
  • Bauer, D. J. (2005a). The role of nonlinear factor-to-indicator relationships in tests of measurement equivalence. Psychological Methods, 10(3), 305316.
  • Bauer, D. J. (2005b). A semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 4, 513535.
  • Bauer, D. J. (2007). Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research, 42(4), 757786.
  • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338363.
  • Benyamini, Y. Ein-Dor, T., Ginzburg, K., & Solomon, Z. (2009). Trajectories of self-rated health among veterans: A latent growth curve analysis of the impact of posttraumatic symptoms. Psychosomatic Medicine, 71(3), 345352.
  • Bentler, P. M. (1982). Linear systems with multiple levels and types of latent variables. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction (pp. 101130). Amsterdam, The Netherlands: North-Holland.
  • Bentler, P. M. (1990). Fit indexes, Lagrange multipliers, constraint changes and incomplete data in structural models. Multivariate Behavioral Research, 25(2), 163172.
  • Bentler, P. M. (2005). Latent growth curves. In J. Werner (Ed.), Zeitreihenanalysen (pp. 1336). Berlin, Germany: Logos.
  • Bentler, P. M. (2007a). Can scientifically useful hypotheses be tested with correlations? American Psychologist, 62, 772782.
  • Bentler, P. M. (2007b). On tests and indices for evaluating structural models. Personality and Individual Differences, 42, 825829.
  • Bentler, P. M. (2007c). Covariance structure models for maximal reliability of unit-weighted composites. In S.-Y. Lee (Ed.), Handbook of latent variable and related models (pp. 119). Amsterdam, The Netherlands: North-Holland.
  • Bentler, P. M. (2008). EQS 6 structural equations program manual. Encino, CA: Multivariate Software. www.mvsoft.com
  • Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74, 137143.
  • Bentler, P. M., & de Leeuw, J. (2011). Factor analysis via components analysis. Psychometrika, 76(3), 461470. doi: 10.1007/S11336-011-9217-5
  • Bentler, P. M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P. R. Krishnaiah (Ed.), Multivariate analysis VI (pp. 942). Amsterdam, The Netherlands: North-Holland.
  • Bentler, P. M., & Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25, 6774.
  • Bentler, P. M., & Liang, J. (2008). A unified approach to two-level structural equation models and linear mixed effects models. In D. Dunson (Ed.), Random effects and latent variable model selection (pp. 95119). New York, NY: Springer.
  • Bentler, P. M., Liang, J., Tang, M.-L., & Yuan, K.-H. (2011). Constrained maximum likelihood estimation for two-level mean and covariance structure models. Educational and Psychological Measurement, 71(2), 325345.
  • Bentler, P. M., Newcomb, M. D., & Zimmerman, M. A. (2002). Cigarette use and drug use progression: Growth trajectory and lagged effect hypotheses. In D. B. Kandel (Ed.), Examining the gateway hypothesis: Stages and pathways of drug involvement (pp. 223253). New York, NY: Cambridge University Press.
  • Bentler, P. M., & Raykov, T. (2000). On measures of explained variance in nonrecursive structural equation models. Journal of Applied Psychology, 85, 125131.
  • Bentler, P. M., & Satorra, A. (2010). Testing model nesting and equivalence. Psychological Methods, 15, 111123.
  • Bentler, P. M., Satorra, A., & Yuan, K.-H. (2009). Smoking and cancers: Case-robust analysis of a classic data set. Structural Equation Modeling, 16, 382390.
  • Bentler, P. M., & Savalei, V. (2010). Analysis of correlation structures: Current status and open problems. In S. Kolenikov, D. Steinley, & L. Thombs (Eds.), Statistics in the social sciences: Current methodological developments (pp. 136). Hoboken NJ: Wiley.
  • Bentler, P. M., & Yuan, K.-H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34(2), 181197.
  • Bentler, P. M., & Yuan, K.-H. (2011). Positive definiteness via off-diagonal scaling of a symmetric indefinite matrix. Psychometrika, 76(1), 119123.
  • Bentler, P. M., & Weeks, D. G. (1980). Linear structural equation with latent variables. Psychometrika, 45, 289308.
  • Biesanz, J. C., Deeb-Sossa, N., Papadakis, A. A., Bollen, K. A., & Curran, P. J. (2004). The role of coding time in estimating and interpreting growth curve models. Psychological Methods, 9(1), 3052. doi:10.1037/1082–989X.9.1.30
  • Blozis, S. A. (2004). Structured latent curve models for the study of change in multivariate repeated measures. Psychological Methods, 9(3), 334353.
  • Bollen, K. A. (1987). Outliers and improper solutions: A confirmatory factor analysis example. Sociological Methods & Research, 15, 37584.
  • Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.
  • Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605634.
  • Bollen, K. A. (2007). Interpretational confounding is due to misspecification, not to type of indicator: Comment on Howell, Breivik, and Wilcox (2007). Psychological Methods, 12(2), 219228.
  • Bollen, K. A., Bauer, D. J., Christ, S. L., & Edwards, M. C. (2010). An overview of structural equations models and recent extensions. In S. Kolenikov, D. Steinley, & L. Thombs (Eds.), Recent developments in social science statistics (pp. 3780). Hoboken, NJ: Wiley.
  • Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis of two traditions. Sociological Methods & Research, 32, 336383.
  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.
  • Bollen, K. A., & Davis, W. R. (2009a). Causal indicator models: Identification, estimation, and testing. Structural Equation Modeling, 16(3), 498522.
  • Bollen, K. A., & Davis, W. R. (2009b). Two rules of identification for structural equation modeling. Structural Equation Modeling, 16(3), 523536.
  • Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305314.
  • Bollen, K. A., & Maydeu-Oliveres, A. (2007). A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables. Psychometrika, 72, 309326.
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford Press.
  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of co-variance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.
  • Browne, M. W., & Cudeck R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural models. Newbury Park, CA: Sage.
  • Bryant, F. B., & Satorra, A. (in press). Principles and practice of scaled difference chi-square testing. Structural Equation Modeling.
  • Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and programming (2nd ed.). Mahwah, NJ: Erlbaum.
  • Byrne, B. M., Lam, W. W. T., & Fielding, R. (2008). Measuring patterns of change in personality assessments: An annotated application of latent growth curve modeling. Journal of Personality Assessment, 90(6), 536546.
  • Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456466.
  • Cai, J.-H., Song, X.-Y., & Lee, S.-Y. (2008). Bayesian analysis of nonlinear structural equation models with mixed continuous, ordered and unordered categorical, and nonignorable missing data, Statistics and its Interface, 1, 99114.
  • Cai, L. (2008). SEM of another flavor: Two new application of the supplemented EM algorithm. British Journal of Mathematical and Statistical Psychology, 61(2), 309329.
  • Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-Hastings-Robbins-Monro algorithm. Psychometrika, 75(1), 3357.
  • Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307335.
  • Cai, L. (2010c). A two-tier full-information item factor analysis model with applications. Psychometrika, 75(4), 581612.
  • Cai, L., Yang, L. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychological Methods. doi: 10.1037/a0023350
  • Chen, F., Curran P. J., Bollen K. A., Kirby J. B., & Paxton, P. M. (2008). An empirical evaluation of the use of fixed cutoff points in rmsea test statistics in structural equation models. Sociological Methods & Research, 36, 462494.
  • Chun, S. Y., & Shapiro, A. (2009). Normal versus noncentral chi-square asymptotics of misspecified models. Multivariate Behavioral Research, 44, 803827.
  • Chun, S. Y., & Shapiro, A. (2010). Construction of covariance matrices with a specified discrepancy function minimizer, with application to factor analysis. SIAM Journal of Matrix Analysis and Applications, 31, 15701583.
  • Coenders, G. Batista-Foguet, J. M., & Saris, W. E. (2008). Simple, efficient and distribution-free approach to interaction effects in complex structural equation models. Quality & Quantity, 42(3), 369396.
  • Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis. Hoboken, NJ: Wiley.
  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 19.
  • Cudeck, R., & Browne, M. W. (1992). Constructing a covariance matrix that yields a specified minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357369.
  • Cudeck, R., Harring, J. R., & du Toit, S. H. C. (2009). Marginal maximum likelihood estimation of a latent variable model with interaction. Journal of Educational and Behavioral Statistics, 34(1), 131144.
  • Cudeck, R., & MacCallum, R. C. (Eds.). (2007). Factor analysis at 100: Historical developments and future directions. Mahwah, NJ: Erlbaum.
  • Culpepper, S. A. (2009). A multilevel nonlinear profile analysis model for dichotomous data. Multivariate Behavioral Research, 44, 646667.
  • Culpepper, S. A., & Aguinis, H. (2011). Using analysis of covariance (ancova) with fallible covariates. Psychological Methods. doi: 10.1037/a0023355
  • Curran, P. J. (2000). A latent curve framework for the study of developmental trajectories in adolescent substance use. In J. R. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 142). Mahwah, NJ: Erlbaum.
  • Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37, 136.
  • Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve modeling. Journal of Cognition and Development, 11(2), 121136. doi:10.1080/15248371003699969
  • de Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY: Guilford Press.
  • de Leeuw, J., & Meijer, E. (Eds.). (2008). Handbook of multilevel modeling. New York, NY: Springer.
  • Dijkstra, T. K. (2010). Latent variables and indices: Herman Wold's basic design and partial least squares. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang, (Eds.), Handbook of partial least squares: Concepts, methods, and applications, computational statistics, vol. II (pp. 2346). Heidelberg, Germany: Springer.
  • Dukes, R. L., Stein, J. A., & Ullman, J. B. (1997). Long-term impact of drug abuse resistance education (D.A.R.E.): Results of a six-year follow-up. Evaluation Review, 21, 483500.
  • Duncan, T. E., & Duncan, S. C. (2009). The abc's of LGM: An introductory guide to latent variable growth curve modeling. Social and Personality Compass, 3(6), 979991.
  • Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth curve modeling (2nd ed.). Mahwah, NJ: Erlbaum.
  • Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An introduction to latent variable growth curve modeling: Concepts, issues, and applications. Mahwah, NJ: Erlbaum.
  • Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474497.
  • Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.
  • Enders, C. K. (2011). Missing not at random models for latent growth curve analyses. Psychological Methods, 16(1), 116.
  • Fairchild, A. J., & MacKinnon, D. P. (2009). A general model for testing mediation and moderation effects. Prevention Science, 10(2), 8799.
  • Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466491.
  • Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling, 7, 356410.
  • Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16(4), 625641.
  • Franke, G. R., Preacher, K. J., & Rigdon, E. E. (2008). Proportional structural effects of formative indicators. Journal of Business Research, 61(12), 12291237.
  • Gold, M. S., Bentler, P. M., & Kim, K. H. (2003). A comparison of maximum-likelihood and asymptotically distribution-free methods of treating incomplete nonnormal data. Structural Equation Modeling, 10, 4779.
  • Grace, J. B. (2006). Structural equation modeling and natural systems. New York, NY: Cambridge University Press.
  • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80100.
  • Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323343.
  • Grilli, L., & Rampichini, C. (2007). Multilevel factor models for ordinal variables. Structural Equation Modeling, 14(1), 125.
  • Grimm, K. J., & Ram, N. (2009). A second-order growth mixture model for developmental research. Research in Human Development, 6(2–3), 121143.
  • Grimm, K. J., & Widaman, K. F. (2010). Residual structures in latent growth curve modeling. Structural Equation Modeling, 17(3), 424442.
  • Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71(2), 306324.
  • Hancock, G. R., & Samuelsen, K. M. (2008). Advances in latent variable mixture models. Charlotte, NC: Information Age.
  • Hardin, A. M., Chang, J. C., & Fuller, M. A. (2011). Formative measurement and academic research: In search of measurement theory. Educational and Psychological Measurement, 71(2), 270284.
  • Harrington, D. (2009). Confirmatory factor analysis. New York, NY: Oxford University Press.
  • Hayashi, K., & Bentler, P. M. (2000). On the relations among regular, equal unique variances, and image factor analysis models. Psychometrika, 65, 5972.
  • Hayashi, K., Bentler, P. M., & Yuan, K.-H. (2007). On the likelihood ratio test for the number of factors in exploratory factor analysis. Structural Equation Modeling, 14, 505526.
  • Hayashi, K., Bentler, P. M., & Yuan, K.-H. (2008). Structural equation modeling. In C. R. Rao, J. Miller, & D. C. Rao (Eds.), Handbook of statistics 27 Epidemiology & medical statistics (pp. 395428). Amsterdam, The Netherlands: North-Holland.
  • Headrick, T. C. (2010). Statistical simulation: Power method polynomials and other transformations. New York, NY: Chapman & Hall/CRC.
  • Hershberger, S. (2003). The growth of structural equation modeling. Structural Equation Modeling, 10(1), 3546.
  • Hertzog, C., van Oertzen, T., Ghisletta, P., & Linderberger, U. (2008). Evaluating the power of latent growth curve models to detect individual differences in change. Structural Equation Modeling, 15(4), 541563.
  • Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16, 127.
  • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11(1), 3653 (erratum: p. 305).
  • Holgado–Tello, F. P., Chacón–Moscoso, S., Barbero–García, I., & Vila–Abad, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, 44(1), 153166.
  • Hoogland, J. J. (1999). The robustness of estimation methods for covariance structure analysis. Unpublished PhD dissertation, Rijksuniversiteit Groningen.
  • Hoshino, T., & Bentler, P. M. (2011). Bias in factor score regression and a simple solution. UCLA Statistics Preprint #621. http://preprints.stat.ucla.edu
  • Howell, R. D., Breivik, E., & Wilcox, J. B. (2007a). Reconsidering formative measurement. Psychological Methods, 12(2), 205218.
  • Howell, R. D., Breivik, E., & Wilcox, J. B. (2007b). Is formative measurement really measurement? Reply to Bollen (2007) and Bagozzi (2007). Psychological Methods, 12(2), 238245.
  • Hox, J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York, NY: Routledge.
  • Hox, J. J., & Roberts, J. K. (Eds.). (2011). Handbook of advanced multilevel analysis. New York, NY: Routledge.
  • Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structural equation modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424453.
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155.
  • Hu, L.-T., Bentler, P. M., & Kano Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351362.
  • Huba, G. J., & Harlow, L. L. (1987). Robust structural equation models: Implications for developmental psychology. Child Development, 58, 147166.
  • Hung, L.-F. (2010). The multigroup multilevel categorical latent growth curve models. Multivariate Behavioral Research, 45(2), 359392.
  • Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309334.
  • Jackson, D., Gillaspy, J., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14(1), 623.
  • Jaffe, A., & Bentler, P. M. (2009). Structural equation modeling and drug abuse etiology: A historical perspective. In L. M. Scheier (Ed.), Handbook of drug use etiology: Theory, methods and empirical findings (pp. 547562). Washington DC: American Psychological Association.
  • Jamshidian, M., & Bentler, P. M. (1999). Using complete data routines for ML estimation of mean and covariance structures with missing data. Journal of Educational and Behavioral Statistics, 23, 2141.
  • Jamshidian, M., & Jalal, S. (2010). Tests of homoscedasticity, normality, and missing completely at random for incomplete multivariate data. Psychometrika, 75(4), 126.
  • Jamshidian, M., Yuan, K., & Le, P. (in press). Using confidence intervals to test for non-ignorable non-response.
  • Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika. doi: 10.1007/S11336-011-9218-4
  • Joe, H., & Maydeu-Olivares, A. (2010). A general family of limited information goodness-of-fit statistics for multinomial data. Psychometrika, 75(3), 393419.
  • Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 57, 409442.
  • Kano, Y., & Takai, K. (2011). Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model. Journal of Multivariate Analysis, 102, 12411255.
  • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.
  • Khoo, S.-T., & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. In J. S. Rose, L. Chassin, C. C. Preston, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 4378). Mahwah, NJ: Erlbaum.
  • Kim, K. H. (2005). The relation among fit indexes, power, and sample size in structural equation modeling. Structural Equation Modeling, 12(3), 368390.
  • Kim, K. H., & Bentler, P. M. (2002). Tests of homogeneity of means and covariance matrices for multivariate incomplete data. Psychometrika, 67, 609624.
  • Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42(4), 647673.
  • Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York, NY: Guilford Press.
  • Lee, S.-Y. (Ed.) (2007). Handbook of latent variable and related models. Amsterdam, The Netherlands: North-Holland.
  • Lee, S.-Y., Poon, W.-Y., & Bentler, P. M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339358.
  • Lee, S.-Y., Song, X.-Y, & Tang, N.-S. (2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Structural Equation Modeling, 14(3), 404434.
  • Li, L., & Bentler, P. M. (2011a). Quantified choice of root-mean-square errors of approximation for evaluation and power analysis of small differences between structural equation models. Psychological Methods, 16(2), 116126.
  • Li, L., & Bentler, P. M. (2011b). The greatest lower bound to reliability: Corrected and resampling estimators. Under editorial review.
  • Liang, J., & Bentler, P. M. (2004). An EM algorithm for fitting two-level structural equation models. Psychometrika, 69, 101122.
  • Lin, J., & Bentler, P. M. (2010). A new goodness of fit test statistic for covariance structure analysis and its comparative performance. Under review.
  • Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151173.
  • Little, R. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 11981202.
  • Little, R., & Rubin, D. (2002). Statistical analysis with missing data. New York, NY: Wiley.
  • Liu, J. (2007). Multivariate ordinal data analysis with pairwise likelihood and its extension to SEM. Unpublished dissertation, UCLA.
  • Liu, J., & Bentler, P. M. (2009). Latent variable approach to high dimensional ordinal data using composite likelihood. Technical Report, Department of Psychology, UCLA.
  • Lubke, G. H. (2010). Latent variable mixture modeling. In G. R. Hancock & R. O. Mueller (Eds.), The reviewer's guide to quantitative methods in the social sciences. New York, NY: Routledge.
  • Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10(1), 2139.
  • Lubke, G. H., & Neale, M. C. (2008). Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models. Multivariate Behavioral Research, 43, 592620
  • MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107120.
  • MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance structure models: Some practical issues. Psychological Bulletin, 114(3), 533541.
  • MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. Psychological Methods, 11, 1935.
  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modelling. Psychological Methods, 1, 130149.
  • MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in power analysis for tests of structural equation models. Structural Equation Modeling, 17, 2341.
  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 8499.
  • Macho, S., & Ledermann, T. (2011). Estimating, testing, and comparing specific effects in structural equation modles: The phantom model approach. Psychological Methods, 16(1), 3443.
  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, NY: Taylor & Francis.
  • MacKinnon, D. P., & Fairchild, A. J. (2009). Current directions in mediation analysis. Current Directions in Psychological Science, 18(1), 1620.
    Direct Link:
  • MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593614.
  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83104. doi:10.1037/1082-989X.7.1.83
  • Mair, P., Satorra, A., & Bentler, P. M. (2011). Nonnormal multivariate data from copulas: Applications to SEM. Under editorial review.
  • Mair, P., Wu, E., & Bentler, P. M. (2010). EQS goes R: Simulations for SEM using the package REQS. Structural Equation Modeling, 17:2, 333349.
  • Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students' evaluations of university teaching. Structural Equation Modeling, 16(3), 439476.
  • Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22(3), 471491.
  • Marsh, H. W., Wen, Z., & Hau, K.-T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275300.
  • Maydeu-Olivares, A., Coffman, D. L., García-Forero, C., & Gallardo-Pujol, D. (2010). Hypothesis testing for coefficient alpha: An SEM approach. Behavior Research Methods, 42(2), 618625.
  • Maydeu-Olivares, A., Coffman, D. L., & Hartmann, W. M. (2007). Asymptotically distribution-free (ADF) interval estimation of coefficient alpha. Psychological Methods, 12(2), 157176 (errata: p. 433).
  • Maydeu-Olivares, A., García-Forero, C., Gallardo-Pujol, D., & Renom, J. (2009). Testing categorized bivariate normality with two-stage polychoric correlation estimates. Methodology, 5(4), 131136.
  • Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and goodness-of-fit testing in 2n contingency tables: A unified framework. Journal of the American Statistical Association, 100, 10091020.
  • McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110133.
  • McDonald, R. P. (2010). Structural models and the art of approximation. Perspectives on Psychological Science, 5(6), 675686.
  • Mehta, P. D., Neale, M. C., & Flay, B. R. (2004). Squeezing interval change from ordinal panel data: Latent growth curves with ordinal outcomes. Psychological Methods, 9(3), 301333.
  • Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves. Psychological Methods, 5, 2343.
  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York, NY: Routledge.
  • Mooijaart, A., & Bentler, P. M. (2010). An alternative approach for nonlinear latent variable models. Structural Equation Modeling, 17(3), 357373.
  • Mooijaart, A., & Satorra, A. (2009). On insensitivity of the chi-square model test to non-linear misspecification in structural equation models. Psychometrika, 74, 443455.
  • Mooijaart, A., & Satorra, A. (2011). MM versus ML estimates of structural equation models with interaction terms: Robustness to non-normality of the consistency property. Preprint #620, UCLA Department of Statistics.
  • Mooijaart, A., & Satorra, A. (in press). Moment testing for interaction terms in structural equation modeling. Psychometrika.
  • Mulaik, S. A. (2009). Linear causal modeling with structural equations. Boca Raton, FL: Chapman & Hall/CRC.
  • Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.
  • Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54(4), 557585.
  • Muthén, B., & Asparouhov, T. (2009a). Multilevel regression mixture analysis. Journal of the Royal Statistical Society, Series A, 172, 639657.
  • Muthén, B., & Asparouhov, T. (2009b). Growth mixture modeling: Analysis with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 143165). Boca Raton, FL: Chapman & Hall/CRC.
  • Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52, 431462.
  • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55(2), 463469.
  • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535569.
  • O'Boyle, E. H. Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs theory inorganizational research using latent variables. Journal of Applied Psychology, 96(1), 112.
  • Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent discrepancy functions for maximum likelihood estimation: Do their test statistics follow a non-central chi-square distribution under model misspecification? Sociological Methods & Research, 32(4), 453500.
  • Penev, S., & Raykov, T. (2006). On the relationship between maximal reliability and maximal validity of linear composites. Multivariate Behavioral Research, 41(2), 105126.
  • Peugh, J., & Enders, C. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525556.
  • Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93115.
  • Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift's electric factor analysis machine. Understanding Statistics, 2(1), 1343.
  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69(2), 167190.
  • Raykov, T. (2005). Bias-corrected estimation of noncentrality parameters of covariance structure models. Structural Equation Modeling, 12, 120129.
  • Raykov, T., Dimitrov, D. M., & Asparouhov, T. (2010). Evaluation of scale reliability with binary measures using latent variable modeling. Structural Equation Modeling, 17(2), 265279.
  • Raykov, T., & Marcoulides, G. A. (2006). Estimation of generalizability coefficients via a structural equation modeling approach to scale reliability evaluation. International Journal of Testing, 6(1), 8195.
  • Raykov, T., & Penev, S. (2010). Evaluation of reliability coefficients for two-level models via latent variable analysis. Structural Equation Modeling, 17(4), 629641.
  • Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.
  • Reinartz, W. J., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Market Research, 26, 332344.
  • Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor model and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544559.
  • Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145154.
  • Rosellini, A. J., & Brown, T. A. (2011). The NEO five-factor inventory: Latent structure and relationships with dimensions of anxiety and depressive disorders in a large clinical sample. Assessment, 18(1), 2738.
  • Rudolph, K. D., Troop-Gordon, W., Hessel, E. T., & Schmidt, J. D. (2011). A latent growth curve analysis of early and increasing peer victimization as predictors of mental health across elementary school. Journal of Clinical Child and Adolescent Psychology, 40(1), 111122.
  • Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73103.
  • Saris, W. E., Satorra, A., & van der Veld, W. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16(4), 124.
  • Satorra, A. (1992). Asymptotic robust inferences in the analysis of mean and covariance structures. Sociological Methodology, 22, 249278.
  • Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. In Proceedings of the American Statistical Association (pp. 308313). Alexandria, VA: American Statistical Association.
  • Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399419). Thousand Oaks, CA: Sage.
  • Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514.
  • Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75, 243248.
  • Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 8390.
  • Savalei, V. (2010). Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison. Structural Equation Modeling, 17(2), 241264.
  • Savalei, V., & Bentler, P. M. (2005). A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF. Structural Equation Modeling, 12, 183214.
  • Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477497.
  • Savalei, V., & Yuan, K.-H. (2009). On the model-based bootstrap with missing data: Obtaining a p-value for a test of exact fit. Multivariate Behavioral Research, 44, 741763.
  • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147177.
  • Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71(1), 95113.
  • Shapiro, A. (2009). Asymptotic normality of test statistics under alternative hypotheses. Journal of Multivariate Analysis, 100, 936945.
  • Shapiro, A., & Browne, M. W. (1987). Analysis of covariance structures under elliptical distributions. Journal of the American Statistical Association, 82, 10921097.
  • Shapiro, A., & ten Berge, J. M. F. (2000). The asymptotic bias of minimum trace factor analysis, with applications to the greatest lower bound to reliability. Psychometrika, 65(3), 413425.
  • Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W. R. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. Journal of Business Research, 58(1), 935943.
  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach's alpha. Psychometrika, 74(1), 107120.
  • Skrondal, A, & Laake, P. (2001) Regression among factor scores. Psychometrika, 66(4), 563575. doi: 10.1007/BF02296196
  • Skrondal, A., & Rabe-Hesketh, S. (2011). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. New York, NY: Chapman & Hall/CRC.
  • Snijders, T., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). London, UK: Sage.
  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structures between groups. British Journal of Mathematical and Statistical Psychology, 27, 229239.
  • Song, X.-Y., Lee, S.-Y. (2007). Bayesian analysis of latent variable models with nonignorable missing outcomes from exponential family. Statistics in Medicine, 26, 681693.
  • Steiger, J. H. (2000). Point estimation, hypothesis testing, and interval estimation using the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7, 149162.
  • Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42(5), 893898.
  • Stein, J. A., Nyamathi, A., Ullman, J. B., & Bentler, P. M. (2007). Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: A multilevel latent variable approach. AIDS and Behavior, 11(1), 8798. doi:10.1007/s10461-005-9058-2
  • ten Berge, J. M. F., & Soèan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69(4), 613625.
  • Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209220.
  • Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative constructs implemented via common factors. Structural Equation Modeling, 18, 117.
  • Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18(1), 110131.
  • Tueller, S., & Lubke, G. (2010). Evaluation of structural equation mixture models: Parameter estimates and correct class assignment. Structural Equation Modeling, 17(2), 165192.
  • Ullman, J. B. (2007). Structural equation modeling. In B. G. Tabachnick & L. S. Fidell, Using multivariate statistics (5th ed., pp. 676780). Boston, MA: Allyn & Bacon.
  • Ullman, J. B., Stein, J. A., & Dukes, R. L. (2000). Evaluation of D.A.R.E. (drug abuse resistance education) with latent variables in the context of a Solomon four group design (pp. 203232). In J. S. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions. Mahwah, NJ: Erlbaum.
  • Velicer, W. F., & Fava, J. L. (1998). Affects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 321327.
  • von Oertzen, T. (2010). Power equivalence in structural equation modelling. British Journal of Mathematical and Statistical Psychology, 63(2), 257272.
  • Wall, M. M., & Amemiya, Y. (2003). A method of moment technique for fitting interaction effects in structural equation models. British Journal of Mathematical and Statistical Psychology, 56, 4763.
  • Wang, L., & Zhang, Z. (2011). Estimating and testing mediation effects with censored data. Structural Equation Modeling, 18(1), 1834.
  • Wicherts, J. M., & Dolan, C. V. (2010). Measurement invariance in confirmatory factor analysis: An illustration using IQ test performance of minorities. Educational Measurement: Issues and Practice, 29(3), 3947.
  • Widaman, K. F., & Thompson, J. S. (2003). On specifying the null model for incremental fit indices in structural equation modeling. Psychological Methods, 8, 1637.
  • Williams, L. J., & O'Boyle, E. H. Jr. (2011). The myth of global fit indices and alternatives for assessing latent variable relations. Organizational Research Methods, 14(2), 350369.
  • Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 5879.
  • Wu, E. J. C., & Bentler, P. M. (2011). EQSIRT—A user-friendly IRT program. Encino, CA: Multivariate.
  • Wu, J., Witkiewitz, K., McMahon, R. J., & Dodge, K. A. (2010). A parallel process growth mixture model of conduct problems and substance use with risky sexual behavior. Drug and Alcohol Dependence, 111(3), 207214.
  • Wu, W., & West, S. G. (2010). Sensitivity of fit indices to misspecification in growth curve models. Multivariate Behavioral Research, 45, 420452.
  • Ximénez, C. (2009). Recovery of weak factor loadings in confirmatory factor analysis under conditions of misspecification. Behavior Research Methods, 41(4), 103852.
  • Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling, 17(3), 392426.
  • Yuan, K.-H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40(1), 115148.
  • Yuan, K.-H. (2008). Noncentral chi-square versus normal distributions in describing the likelihood ratio statistic: The univariate case and its multivariate implication. Multivariate Behavioral Research, 43, 109136.
  • Yuan, K.-H. (2009b). Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis. Journal of Multivariate Analysis, 100, 19001918.
  • Yuan, K.-H., & Bentler, P. M. (1998a). Robust mean and covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 51, 6388.
  • Yuan, K.-H., & Bentler, P. M. (1998b). Structural equation modeling with robust covariances. In A. Raftery (Ed.), Sociological methodology (pp. 363396). Malden, MA: Blackwell.
  • Yuan, K.-H., & Bentler, P. M. (1999). F tests for mean and covariance structure analysis. Journal of Educational and Behavioral Statistics, 24, 225243.
  • Yuan, K.-H., & Bentler, P. M. (2000a). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological methodology 2000 (pp. 165200). Washington, DC: American Sociological Association.
  • Yuan, K.-H., & Bentler, P. M. (2000b). Robust mean and covariance structure analysis through iteratively reweighted least squares. Psychometrika, 65, 4358.
  • Yuan, K.-H., & Bentler, P. M. (2001). Effect of outliers on estimators and tests in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 54, 161175.
  • Yuan, K.-H., & Bentler, P. M. (2002a). On normal theory based inference for multilevel models with distributional violations. Psychometrika, 67, 539562.
  • Yuan, K.-H., & Bentler, P. M. (2002b). On robustness of the normal-theory based asymptotic distributions of three reliability coefficient estimates. Psychometrika, 67, 251259.
  • Yuan, K.-H., & Bentler, P. M. (2003). Eight test statistics for multilevel structural equation models. Computational Statistics & Data Analysis, 44, 89107.
  • Yuan, K.-H., & Bentler, P. M. (2004a). On chi-square difference and z tests in mean and covariance structure analysis when the base model is misspecified. Educational and Psychological Measurement, 64, 737757.
  • Yuan, K.-H., & Bentler, P. M. (2004b). On the asymptotic distributions of two statistics for two-level covariance structure models within the class of elliptical distributions. Psychometrika, 69, 437457.
  • Yuan, K.-H., & Bentler, P. M. (2005). Asymptotic robustness of the normal theory likelihood ratio statistic for two-level covariance structure models. Journal of Multivariate Analysis, 94, 328343.
  • Yuan, K.-H., & Bentler, P. M. (2006a). Mean comparison: Manifest variable versus latent variable. Psychometrika, 71, 139159.
  • Yuan, K.-H., & Bentler, P. M. (2006b). Asymptotic robustness of standard errors in multilevel structural equation models. Journal of Multivariate Analysis, 97, 11211141.
  • Yuan, K. H., & Bentler, P. M. (2007b). Robust procedures in structural equation modeling. In S.-Y. Lee (Ed.), Handbook of latent variable and related models (pp. 367397). Amsterdam, The Netherlands: North-Holland.
  • Yuan, K.-H., & Bentler, P. M. (2007c). Multilevel covariance structure analysis by fitting multiple single-level models. In Y. Xie (Ed.), Sociological methodology 2007 (Vol. 37, pp. 5382). New York, NY: Blackwell.
  • Yuan, K.-H., & Bentler, P. M. (2010a). Consistency of normal-distribution-based pseudo-maximum likelihood estimates when data are missing at random. American Statistician, 64(3), 263267.
  • Yuan, K.-H., & Bentler, P. M. (2010b). Two simple approximations to the distributions of quadratic forms. British Journal of Mathematical and Statistical Psychology, 63, 273291.
  • Yuan, K.-H., & Bentler, P. M. (2010c). Finite normal mixture SEM analysis by fitting multiple conventional SEM models. In T. F. Liao (Ed.), Sociological Methodology 2010 (pp. 191245). Hoboken, NJ: Wiley.
  • Yuan, K.-H., Bentler, P. M., & Chan, W. (2004). Structural equation modeling with heavy tailed distributions. Psychometrika, 69, 421436.
  • Yuan, K.-H., Bentler, P. M., & Kano, Y. (1997). On averaging variables in a confirmatory factor analysis model. Behaviormetrika, 24, 7183.
  • Yuan, K.-H., Bentler, P. M., & Zhang, W. (2005). The effect of skewness and kurtosis on mean and covariance structure analysis: The univariate case and its multivariate implication. Sociological Methods & Research, 34, 249258.
  • Yuan, K.-H., & Chan, W. (2008). Structural equation modeling with near singular covariance matrices. Computational Statistics & Data Analysis, 52, 48424858.
  • Yuan, K.-H., Chan, W., & Bentler, P. M. (2000). Robust transformation with applications to structural equation modeling. British Journal of Mathematical and Statistical Psychology, 53, 3150.
  • Yuan, K.-H., Cheng, Y., & Zhang, W. (2010). Determinants of standard errors of MLE's in confirmatory factor analysis. Psychometrika, 75(4), 633648.
  • Yuan, K.-H., & Hayashi, K. (2006). Standard errors in covariance structure models: Asymptotics versus bootstrap. British Journal of Mathematical and Statistical Psychology, 59, 397417.
  • Yuan, K.-H., & Hayashi, K. (2011). Fitting data to models: Structural equation modeling diagnosis using two scatter plots. Psychological Methods, 15(4), 335351.
  • Yuan, K.-H., Hayashi, K., & Bentler, P. M. (2007). Normal theory likelihood ratio statistic for mean and covariance structure analysis under alternative hypotheses. Journal of Multivariate Analysis, 98, 12621282.
  • Yuan, K.-H., Hayashi, K., & Yanagihara, H. (2007). A class of population covariance matrices in the bootstrap approach to covariance structure analysis. Multivariate Behavioral Research, 42, 261281.
  • Yuan, K.-H., Kouros, C. D., & Kelley, K. (2008). Diagnosis for covariance structure models by analyzing the path. Structural Equation Modeling, 15, 564602.
  • Yuan, K. H., & Lu, L. (2008). SEM with missing data and unknown population distributions using two-stage ML: Theory and its application. Multivariate Behavioral Research, 43, 621652.
  • Yuan, K.-H., Marshall, L. L., & Bentler, P. M. (2002). A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika, 67, 95122.
  • Yuan, K.-H., Marshall, L. L., & Bentler, P. M. (2003). Assessing the effect of model misspecifications on parameter estimates in structural equation models. Sociological Methodology, 33, 241265.
  • Yuan, K.-H., Wallentin, F., & Bentler, P. M. (2011). ML versus MI for missing data with violation of distribution conditions. Under editorial review.
  • Yuan, K.-H., Wu, R., & Bentler, P. M. (2011). Ridge structural equation modeling with correlation matrices for ordinal and continuous data. British Journal of Mathematical and Statistical Psychology, 64, 107133.
  • Yuan, K.-H., & Zhong, X. (2008). Outliers, leverage observations and influential cases in factor analysis: Minimizing their effect using robust procedures. Sociological Methodology, 38, 329368.
  • Yung, Y.-F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62(3), 297330.
  • Zu, J., & Yuan, K.-H. (2010). Local influence and robust procedures for mediation analysis. Multivariate Behavioral Research, 45, 144.