73. Epicardial Mapping of Longstanding Persistent Atrial Fibrillation

  1. Mohammad Shenasa MD3,
  2. Gerhard Hindricks MD4,
  3. Martin Borggrefe MD5,
  4. Günter Breithardt MD6 and
  5. Mark E. Josephson MD7
  1. Natasja de Groot1 and
  2. Maurits Allessie2

Published Online: 18 DEC 2012

DOI: 10.1002/9781118481585.ch73

Cardiac Mapping, Fourth Edition

Cardiac Mapping, Fourth Edition

How to Cite

de Groot, N. and Allessie, M. (2013) Epicardial Mapping of Longstanding Persistent Atrial Fibrillation, in Cardiac Mapping, Fourth Edition (eds M. Shenasa, G. Hindricks, M. Borggrefe, G. Breithardt and M. E. Josephson), Wiley-Blackwell, Oxford, UK. doi: 10.1002/9781118481585.ch73

Editor Information

  1. 3

    Attending Physician, Department of Cardiovascular Services, O'Connor Hospital, Heart & Rhythm Medical Group, San Jose, California, USA

  2. 4

    Professor of Medicine (Cardiology), University Leipzig, Heart Center, Director, Department of Electrophysiology, Leipzig, Germany

  3. 5

    Professor of Medicine (Cardiology), Head, Department of Cardiology, Angiology and Pneumology, University Medical Center, Mannheim Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

  4. 6

    Professor Emeritus of Medicine and Cardiology, Department of Cardiology and Angiology, Hospital of the University of Münster, Münster, Germany

  5. 7

    Chief, Cardiovascular Medicine Division, Director, Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Beth Israel Deaconess Medical Center, Herman C. Dana Professor of Medicine, Harvard Medical School, Boston, Massachusetts, USA

Author Information

  1. 1

    Erasmus Medical Center, Rotterdam, The Netherlands

  2. 2

    Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands

Publication History

  1. Published Online: 18 DEC 2012
  2. Published Print: 10 JAN 2013

ISBN Information

Print ISBN: 9780470670460

Online ISBN: 9781118481585



  • atrial fibrillation;
  • valvular heart disease;
  • epicardial mapping;
  • fibrillation potentials;
  • fractionation;
  • wave-mapping;
  • epicardial breakthrough;
  • longitudinal dissociation in conduction


The electropathological alterations of the atria responsible for development of a substrate of persistent atrial fibrillation (AF) in humans are still unknown. In this chapter we evaluate a new mapping algorithm (wave-mapping) by comparing the spatiotemporal characteristics of the fibrillatory process in patients with normal sinus rhythm and long-standing persistent AF. In patients with structural heart disease, the electropathological substrate was determined by electrical dissociation between atrial muscle bundles (longitudinal dissociation) and a high incidence of endo-epicardial breakthroughs. Longitudinal dissociation was quantified by measuring the total length of lines of block per cm2 per AF cycle. These lines of block were predominantly oriented parallel to the major atrial muscle bundles. Endo-epicardial breakthroughs occurred over the entire atrial surface, both in the left and the right atrium. They are considered as an important source of “new” fibrillation waves, because they represent transmural junction sites and bifurcation points between fibrillation waves propagating in the dissociated endo- and epicardial layers of the atrial wall. We hypothesize that the high persistence of AF in patients with valvular disease is due to the existence of a double layer of fibrillation waves, resulting from electrical dissociation of the endo- and epicardial layers. In patients with structural heart disease, AF is maintained by a constant “ping-pong” of multiple fibrillation waves between the endo-and epicardial layers of the atrial wall.