5. Mixture of Experts Modelling with Social Science Applications

  1. Kerrie L. Mengersen2,
  2. Christian P. Robert3 and
  3. D. Michael Titterington4
  1. Isobel Claire Gormley and
  2. Thomas Brendan Murphy

Published Online: 24 APR 2011

DOI: 10.1002/9781119995678.ch5

Mixtures: Estimation and Applications

Mixtures: Estimation and Applications

How to Cite

Gormley, I. C. and Murphy, T. B. (2011) Mixture of Experts Modelling with Social Science Applications, in Mixtures: Estimation and Applications (eds K. L. Mengersen, C. P. Robert and D. M. Titterington), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781119995678.ch5

Editor Information

  1. 2

    School of Mathematical Sciences, Queensland University of Technology, Australia

  2. 3

    Université Paris-Dauphine, CEREMADE, Paris, France

  3. 4

    University of Glasgow, Glasgow, UK

Author Information

  1. School of Mathematical Sciences, University College Dublin, Ireland

Publication History

  1. Published Online: 24 APR 2011
  2. Published Print: 15 APR 2011

ISBN Information

Print ISBN: 9781119993896

Online ISBN: 9781119995678

SEARCH

Keywords:

  • mixture of experts modeling - with social science applications;
  • clustering methods, to group observations - into homogeneous subgroups;
  • clustering methods - widely used in social sciences;
  • cluster analysis application, common that clustering - implemented on outcome variables of interest;
  • motivating examples - and voting blocs;
  • discovery and characterisation of voting blocs - of considerable interest;
  • study of social mechanisms - underlying cooperation among peers within organisation;
  • mixture of experts model - for ranked preference data;
  • mixture of experts latent position cluster model;
  • latent position cluster model (LPCM) - idea of latent social space model

Summary

This chapter contains sections titled:

  • Introduction

  • Motivating examples

  • Mixture models

  • Mixture of experts models

  • A mixture of experts model for ranked preference data

  • A mixture of experts latent position cluster model

  • Discussion

  • Acknowledgements

  • References