10. Influence of Sediment Input and Plate-Motion Obliquity on Basin Development Along an Active Oblique-Divergent Plate Boundary: Gulf of California and Salton Trough

  1. Cathy Busby3 and
  2. Antonio Azor4
  1. Rebecca J. Dorsey1 and
  2. Paul J. Umhoefer2

Published Online: 30 JAN 2012

DOI: 10.1002/9781444347166.ch10

Tectonics of Sedimentary Basins: Recent Advances

Tectonics of Sedimentary Basins: Recent Advances

How to Cite

Dorsey, R. J. and Umhoefer, P. J. (2011) Influence of Sediment Input and Plate-Motion Obliquity on Basin Development Along an Active Oblique-Divergent Plate Boundary: Gulf of California and Salton Trough, in Tectonics of Sedimentary Basins: Recent Advances (eds C. Busby and A. Azor), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781444347166.ch10

Editor Information

  1. 3

    Department of Earth Science, University of California, Santa Barbara CA 93106, USA

  2. 4

    Departamento de Geodinámica, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain

Author Information

  1. 1

    Department of Geological Sciences, 1272 University of Oregon, Eugene, OR 97403 USA

  2. 2

    Department of Geology, Northern Arizona University, Flagstaff, AZ 86011 USA

Publication History

  1. Published Online: 30 JAN 2012
  2. Published Print: 30 DEC 2011

ISBN Information

Print ISBN: 9781405194655

Online ISBN: 9781444347166

SEARCH

Keywords:

  • Gulf of California;
  • oblique-divergent plate boundary;
  • rift architecture;
  • transtensional basins;
  • Colorado River

Summary

Transtensional basins have formed along the Pacific-North America plate boundary in the Gulf of California and Salton Trough region during Late Cenozoic time. Axial basins occupy a 50-60 km wide belt along the main plate boundary, and change from sedimentstarved oceanic spreading centers in the south that are oriented perpendicular to long NW-striking transform faults, to oblique N-trending pull-apart (stepover) basins in the north that contain thick sediments and lack evidence for normal oceanic crust. Marginal basins are found along the flanks of the Gulf-Trough corridor and consist mainly of supradetachment basins (only in the north), transtensional fault-termination basins, and classic orthogonal rift basins.

Areview of previous studies suggests that three main parameters govern the structural style, composition, and total thickness of sedimentary basins in this setting: (1) the rift angle (a), defined as the acute angle between the overall trend of the plate boundary and the direction of relative plate motion; (2) proximity to voluminous input of sediment from the Colorado River and other smaller drainages in the north; and (3) the degree of strain partitioning. Detachment faults and supradetachment basins are well documented in the northern Gulf and Salton Trough where α ≥ 30°, whereas no detachment faults are recognized in the central and southern Gulf of California (α < 20°). We suggest that faster extension associated with a higher rift angle is the main factor responsible for creation of supradetachment basins in the northern region.

Voluminous input of sediment derived primarily from the Colorado River exerts a first-order control on crustal thickness and composition, lithospheric mechanics, and rift architecture. In the sediment-starved southern Gulf of California, the plate boundary has completed the transition from continental rifts to seafloor spreading centers with normal ocean crust and magnetic lineations. The Guaymas spreading center in the central Gulf has young oceanic crust with an upper layer of sediments and shallow intrusions. In contrast, sediment-filled and overfilled basins in the north are characterized by thick new transitional crust that is formed by input and magmatic modifi- cation of sediment, which fills the new space created by lithospheric rupture and oblique divergence. Thus the rate of sediment input appears to determine whether or not continental rifting progresses to the ultimate formation of a new ocean basin floored by normal basaltic crust.