The Classical Atom: Stabilization of Electronic Trojan Wavepackets

  1. Dr. Dietrich Papenfuß4,
  2. Professor Dr. Dieter Lüst5 and
  3. Professor Dr. Wolfgang P. Schleich6
  1. David Farrelly1,
  2. Ernestine A. Lee2 and
  3. T. Uzer3

Published Online: 29 NOV 2007

DOI: 10.1002/9783527610853.ch28

100 Years Werner Heisenberg: Works and Impact

100 Years Werner Heisenberg: Works and Impact

How to Cite

Farrelly, D., Lee, E. A. and Uzer, T. (2002) The Classical Atom: Stabilization of Electronic Trojan Wavepackets, in 100 Years Werner Heisenberg: Works and Impact (eds D. Papenfuß, D. Lüst and W. P. Schleich), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527610853.ch28

Editor Information

  1. 4

    Alexander von Humboldt-Stiftung, Bonn, Germany

  2. 5

    Humboldt Universität, Institut für Physik, Germany

  3. 6

    Universität Ulm, Abteilung f. Quantenphysik, Albert-Einstein-Allee 11, 89069 Ulm, Germany

Author Information

  1. 1

    Department of Chemistry, Utah State University, Logan, Utah 84322, USA

  2. 2

    Incyte Genomics, 3160 Porter Drive, Palo Alto, California 94304, USA

  3. 3

    Center for Nonlinear Sciences and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

Publication History

  1. Published Online: 29 NOV 2007
  2. Published Print: 27 AUG 2002

ISBN Information

Print ISBN: 9783527403929

Online ISBN: 9783527610853



  • quantum physics;
  • classical atom;
  • coherent states in Rydberg atoms;
  • magnetic fields;
  • electronic wavepacket;
  • circular Kepler orbit;
  • Kepler periods;
  • classical Bohr atom


This article demonstrates that coherent states in Rydberg atoms can be produced and stabilized by combining a circularly polarized microwave field with a static, perpendicular magnetic field. These electronic wavepackets owe their stability to atomic analogs of the Lagrange equilibria, which confine Jupiter's Trojan asteroids. While these “Trojan” wavepackets may slowly decay due to tunneling, a more significant source of dispersion will arise if the tails of the wavepacket penetrate appreciably into the non-linear or chaotic parts of phase space. In the laboratory frame, if these dispersive factors can be minimized — and this may be accomplished using magnetic fields — the electronic wavepacket will travel along a circular Kepler orbit while remaining localized radially and angularly for a finite — but large — number of Kepler periods. In this sense, the system is a classical Bohr atom.