Time Asymmetric Quantum Theory and the Z-Boson Mass and Width

  1. Dr. Dietrich Papenfuß3,
  2. Professor Dr. Dieter Lüst4 and
  3. Professor Dr. Wolfgang P. Schleich5
  1. Arno R. Bohm1 and
  2. Piotr Kielanowski2

Published Online: 29 NOV 2007

DOI: 10.1002/9783527610853.ch9

100 Years Werner Heisenberg: Works and Impact

100 Years Werner Heisenberg: Works and Impact

How to Cite

Bohm, A. R. and Kielanowski, P. (2002) Time Asymmetric Quantum Theory and the Z-Boson Mass and Width, in 100 Years Werner Heisenberg: Works and Impact (eds D. Papenfuß, D. Lüst and W. P. Schleich), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527610853.ch9

Editor Information

  1. 3

    Alexander von Humboldt-Stiftung, Bonn, Germany

  2. 4

    Humboldt Universität, Institut für Physik, Germany

  3. 5

    Universität Ulm, Abteilung f. Quantenphysik, Albert-Einstein-Allee 11, 89069 Ulm, Germany

Author Information

  1. 1

    Department of Physics, University of Texas at Austin, Austin, TX, USA

  2. 2

    Departamento de Física, CINVESTAV del IPN, Mexico

Publication History

  1. Published Online: 29 NOV 2007
  2. Published Print: 27 AUG 2002

ISBN Information

Print ISBN: 9783527403929

Online ISBN: 9783527610853

SEARCH

Keywords:

  • elementary particles theory;
  • time asymmetric quantum theory;
  • Z-boson mass and width;
  • unified theory of resonance and decay phenomena;
  • causality;
  • time asymmetry;
  • Breit-Wigner scattering amplitude;
  • definition of the mass and width of a relativistic resonance

Summary

A unified theory of resonance and decay phenomena is presented for the non-relativistic and the relativistic cases. It incorporates causality and time asymmetry. The relativistic quasistable particles are described by semigroup representations of the causal Poincaré transformations characterized by spin j and complex square mass SR = (MRiΓR/2)2, where ΓR is the width of a relativistic Breit-Wigner scattering amplitude. The lifetime of the exponentially decaying state described by this semigroup representation [j; SR] is derived as τ = h̄/ΓR. This provides a criterion for the appropriate definition of the mass and width of a relativistic resonance.