Chapter 7. Less Common Applications of Enantioselective HPLC Using the SMB Technology in the Pharmaceutical Industry

  1. Dr. Ganapathy Subramanian
  1. Stefanie Abel1 and
  2. Markus Juza2

Published Online: 20 SEP 2007

DOI: 10.1002/9783527611737.ch7

Chiral Separation Techniques: A Practical Approach, Third Edition

Chiral Separation Techniques: A Practical Approach, Third Edition

How to Cite

Abel, S. and Juza, M. (2006) Less Common Applications of Enantioselective HPLC Using the SMB Technology in the Pharmaceutical Industry, in Chiral Separation Techniques: A Practical Approach, Third Edition (ed G. Subramanian), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527611737.ch7

Editor Information

  1. Littlebourne, 60B Jubilee Road, Canterbury, Kent CT3 1TP, Great Britain

Author Information

  1. 1

    CarboGen AG, Schachenallee 29, 5001 Aarau, Switzerland

  2. 2

    Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, 67400 Illkirch, France

Publication History

  1. Published Online: 20 SEP 2007
  2. Published Print: 20 OCT 2006

ISBN Information

Print ISBN: 9783527315093

Online ISBN: 9783527611737

SEARCH

Keywords:

  • chiral separation techniques;
  • applications of enantioselective HPLC;
  • SMB (simulated moving bed) technology;
  • pharmaceutical industry;
  • unbalanced separations;
  • multi-component separations;
  • unusual isotherms;
  • adsorption behavior;
  • Langmuir adsorption isotherm;
  • solvent gradients;
  • chemistry;
  • racemization;
  • future developments

Summary

This chapter contains sections titled:

  • Introduction – From an Emerging Technology to a Classical Unit Operation

    • Less Common Applications of SMB Technology for Chiral Separations

    • Design and Optimization of Operating Conditions for a Classical SMB Separation

    • Chiral Stationary Phases

  • Unbalanced Separations and Multi-component Separations Using SMB

    • Binary Separations

      • Case Study I: 1:1 vs. 10:1 and 1:10

    • Three-component Separations

      • Case Study II: Three-component Separations with Two Targets

    • Multi-component Separations via SMB

      • Case Study III: Multi-component Separation

    • Generalized Rules for Optimizing Unbalanced and Multicomponent Separations via SMB

      • Detecting Problems

      • Solving Problems

  • Unusual Isotherms and Adsorption Behavior

    • Langmuir Adsorption Isotherm

    • Non-Langmuir Adsorption Isotherms

      • Peak Shape and Form of Linear and Anti-Langmuir Isotherms

      • Region of Complete Separation for an Anti-Langmuir Isotherm

    • Case Studies

      • Case Study IV: Both Compounds Show Anti-Langmuirian Behavior

      • Case Study V: One Compound Shows Anti-Langmuirian Behavior

    • General Trends for Loading Studies and Adsorption Isotherms

  • Applications of Various Column Configurations

    • Symmetrical Configurations

      • Case Study VI: Comparing a 2–2–2–2 and a 1–2–2–1 Configuration

    • Asymmetric Configurations

  • Application of Solvent Gradients

    • Solvent Gradient SMB

      • Case Study VII: Preparative-scale SMB Applying a Reversed Solvent Gradient

  • Chemistry and Racemization

    • Racemization

    • Case Studies

      • Case Study VIII: ASBAT Inhibitor

      • Case Study IX: Antidepressant Oxetine Derivatives

      • Case Study X: Zoloft, a Serotonin Reuptake Inhibitor

      • Case Study XI: Synthesis of Enantiomerically Pure Amines via Schiff Bases

      • Case Study XII: Synthesis of COX-2 Inhibitors

  • Future Developments

    • Non-HPLC Enantioselective SMB Modes

    • Operation Modes, Modeling Software, Control of SMB Units, and Stationary Phases

  • Conclusion

  • Notation

  • Greek Letters

  • Subscripts

  • Acknowledgments

  • References