Chapter 54. Calculation of 29Si Chemical Shifts Using a Density-Functional Based Tight-Binding Scheme

  1. Prof. Dr. Norbert Auner5 and
  2. Prof. Dr. Johann Weis6
  1. Marc Milbradt1,
  2. Heinrich Marsmann1,
  3. Thomas Heine2,
  4. Gotthard Seifert3 and
  5. Thomas Frauenheim4

Published Online: 5 MAY 2008

DOI: 10.1002/9783527619924.ch54

Organosilicon Chemistry V: From Molecules to Materials

Organosilicon Chemistry V: From Molecules to Materials

How to Cite

Milbradt, M., Marsmann, H., Heine, T., Seifert, G. and Frauenheim, T. (2003) Calculation of 29Si Chemical Shifts Using a Density-Functional Based Tight-Binding Scheme, in Organosilicon Chemistry V: From Molecules to Materials (eds N. Auner and J. Weis), Wiley-VCH Verlag GmbH, Weinheim, Germany. doi: 10.1002/9783527619924.ch54

Editor Information

  1. 5

    Department of Inorganic Chemistry, University of Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt am Main, Germany

  2. 6

    Consortium of Electrochemical Industry GmbH, Zielstattstraße 20, 81379 Munich, Germany

Author Information

  1. 1

    Anorganische und Analytische Chemie, Universität Paderborn Warburger Str. 100, 33098 Paderborn, Germany

  2. 2

    Department of Physical Chemistry, University of Geneva, Switzerland

  3. 3

    Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden, Germany

  4. 4

    Theoretische Physik, Universität Paderborn, Germany

Publication History

  1. Published Online: 5 MAY 2008
  2. Published Print: 26 SEP 2003

ISBN Information

Print ISBN: 9783527306701

Online ISBN: 9783527619924

SEARCH

Keywords:

  • DFTB;
  • 29Si;
  • chemical shift calculation

Summary

The shielding constants δ for 29Si, and from it the chemical shifts δ, are calculated for a series of silicon compounds using the IGLO-DFTB method (Individual Gauge for Localized Orbitals, Density-Functional based Tight-Binding). The calculated values of silanes SinH2n+2 (n = 1–5), methylsilanes HnSi(CH3)4-n, and phenylsilanes HnSi(C6H5)4-n (n = 1–3), are compared with DFT calculations and experimental values. Geometries have been optimized using the DFTB method. Calculated geometries are in good agreement with experiment. Calculated chemical shifts correlate quite well with experimental values. After an empirical correction, the chemical shifts for silanes and methylsilanes obtained by DFTB are equivalent to those of DFT calculations. The rms errors with respect to experiment are 4.3 ppm for silanes, 6 ppm for methylsilanes and 6.8 ppm for phenylsilanes.