Chapter 14. Special Computational Techniques

  1. Prof. Dr. Markus Reiher and
  2. Dr. Alexander Wolf

Published Online: 22 JUN 2009

DOI: 10.1002/9783527627486.ch14

Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science

Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science

How to Cite

Reiher, M. and Wolf, A. (2009) Special Computational Techniques, in Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527627486.ch14

Author Information

  1. ETH Zuerich, Laboratory for Physical Chemistry, Hoenggerberg Campus, Wolfgang-Pauli-Strasse 10, 8093 Zuerich, Switzerland

Publication History

  1. Published Online: 22 JUN 2009
  2. Published Print: 14 JAN 2009

ISBN Information

Print ISBN: 9783527312924

Online ISBN: 9783527627486

SEARCH

Keywords:

  • special computational techniques;
  • modified Dirac equation;
  • spin–orbit coupling effects;
  • four-component methods;
  • core potentials

Summary

In the preceding chapters we set out from fundamental physical theory to arrive at a suitable theory for calculations on atoms and molecules, which still features four-component one-particle states. However, we noted that not only for small nuclear charges the contribution of the lower components of these spinors are small indeed. Hence, attempts were made to find Hamiltonians which do not require lower components in the corresponding one-particle functions and which thus are more convenient from a conceptual and — if possible — from a computational point of view. The principal options for such an elimination of small components are now introduced.