Chapter 5.3. Long-Range Surface Plasmon Enhanced Fluorescence Spectroscopy as a Platform for Biosensors

  1. Dr. Renate Förch2,
  2. Prof. Dr. Holger Schönherr3 and
  3. Dr. A. Tobias A. Jenkins4
  1. Amal Kasry2,
  2. Jakub Dostálek1 and
  3. Wolfgang Knoll2

Published Online: 9 SEP 2009

DOI: 10.1002/9783527628599.ch22

Surface Design: Applications in Bioscience and Nanotechnology

Surface Design: Applications in Bioscience and Nanotechnology

How to Cite

Kasry, A., Dostálek, J. and Knoll, W. (2009) Long-Range Surface Plasmon Enhanced Fluorescence Spectroscopy as a Platform for Biosensors, in Surface Design: Applications in Bioscience and Nanotechnology (eds R. Förch, H. Schönherr and A. T. A. Jenkins), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527628599.ch22

Editor Information

  1. 2

    Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

  2. 3

    University of Siegen, Department of Physical Chemistry, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany

  3. 4

    University of Bath, Department of Chemistry, Bath BA2 7AY, United Kingdom

Author Information

  1. 1

    Austrian Research Centers – ARC, Nano-System-Technologies GmbH, Donau-City-Straße 1, 1220 Wien, Austria

  2. 2

    Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Publication History

  1. Published Online: 9 SEP 2009
  2. Published Print: 12 JUN 2009

ISBN Information

Print ISBN: 9783527407897

Online ISBN: 9783527628599

SEARCH

Keywords:

  • long-range surface plasmon enhanced fluorescence spectroscopy;
  • platform for biosensors;
  • SPFS-based biosensor;
  • LRSP-enhanced fluorescence spectroscopy

Summary

Long-range surface plasmons (LRSPs) are electromagnetic waves originating from the coupling between two surface plasmons propagating on opposite interfaces of a thin metal layer surrounded by dielectrics with similar refractive indices. These electromagnetic waves can propagate along the metal film with an order of magnitude lower damping compared to conventional surface plasmons. Therefore, the excitation of LRSPs is associated with a high enhancement of field intensity at the metal/dielectric interface. In surface plasmon enhanced fluorescence spectroscopy (SPFS), this feature increases the fluorescence signal enabling a more precise observation of binding processes of biomolecules in the proximity to the metal surface. In this chapter, we demonstrate recent advancements in LRSP-enhanced fluorescence spectroscopy and its implementation in SPFS-based biosensors.