8. Optical Properties of As-Grown and Process-Induced Stacking Faults in 4H-SiC

  1. Dr. Peter Friedrichs2,
  2. Prof. Dr. Tsunenobu Kimoto3,4,
  3. Prof. Dr. Lothar Ley5 and
  4. Dr. Gerhard Pensl6
  1. Jean Camassel and
  2. Sandrine Juillaguet

Published Online: 28 MAR 2011

DOI: 10.1002/9783527629053.ch8

Silicon Carbide: Growth, Defects, and Novel Applications, Volume 1

Silicon Carbide: Growth, Defects, and Novel Applications, Volume 1

How to Cite

Camassel, J. and Juillaguet, S. (2009) Optical Properties of As-Grown and Process-Induced Stacking Faults in 4H-SiC, in Silicon Carbide: Growth, Defects, and Novel Applications, Volume 1 (eds P. Friedrichs, T. Kimoto, L. Ley and G. Pensl), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527629053.ch8

Editor Information

  1. 2

    SiCED GmbH& Co. KG, Erlangen, Germany

  2. 3

    Kyoto University, Electronic Science and Engineering, A1-301, Katsura, Nishikyo, Kyoto 615-8501, Japan

  3. 4

    Kyoto University, Photonics and Electronics Science and Engineering Center, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8510, Japan

  4. 5

    Universität Erlangen–Nürnberg, Lehrstuhl für Technische Physik, Institut für Physik der Kondensierten Materie, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany

  5. 6

    Universität Erlangen–Nürnberg, Lehrstuhl für Angewandte Physik, Staudtstraße 7/A3, 91058 Erlangen, Germany

Author Information

  1. Université Montpellier 2, Groupe d'Etude des Semiconducteurs and CNRS, cc 074-GES, 34095 Montpellier Cedex 5, France

Publication History

  1. Published Online: 28 MAR 2011
  2. Published Print: 21 OCT 2009

ISBN Information

Print ISBN: 9783527409532

Online ISBN: 9783527629053

SEARCH

Keywords:

  • optical properties;
  • as-grown stacking faults in 4H-SiC;
  • process-induced stacking faults in 4H-SiC;
  • structural aspects;
  • imaging techniques;
  • type-II QW model;
  • transfer matrix method

Summary

This chapter contains sections titled:

  • Introduction

  • Structural aspects

  • Imaging techniques

  • Optical SFs signature

  • More realistic type-II QW model

  • Transfer matrix method

  • Focussing on a single QW

  • Conclusions

  • References