Chapter 10. Energy Gap Model of Glass Formers: Lessons Learned from Polymers

  1. Dr. Purushottam D. Gujrati1,2 and
  2. Dr. Arkadii I. Leonov3
  1. Dr. Puru D. Gujrati1,2

Published Online: 16 JUL 2010

DOI: 10.1002/9783527630257.ch10

Modeling and Simulation in Polymers

Modeling and Simulation in Polymers

How to Cite

Gujrati, P. D. (2010) Energy Gap Model of Glass Formers: Lessons Learned from Polymers, in Modeling and Simulation in Polymers (eds P. D. Gujrati and A. I. Leonov), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527630257.ch10

Editor Information

  1. 1

    The University of Akron, Department of Polymer Science, 302 Buchtel Common, Akron, OH 44325-3909, USA

  2. 2

    The University of Akron, The Departments of Physics and Polymer Science, Akron, OH 44325, USA

  3. 3

    The University of Akron, Department of Polymer Engineering, Polymer Engineering Academic Center, Akron, OH 44325-0301, USA

Author Information

  1. 1

    The University of Akron, Department of Polymer Science, 302 Buchtel Common, Akron, OH 44325-3909, USA

  2. 2

    The University of Akron, The Departments of Physics and Polymer Science, Akron, OH 44325, USA

Publication History

  1. Published Online: 16 JUL 2010
  2. Published Print: 21 APR 2010

ISBN Information

Print ISBN: 9783527324156

Online ISBN: 9783527630257

SEARCH

Keywords:

  • energy gap;
  • entropy extension;
  • fragility;
  • free volume theory;
  • metastability;
  • mode coupling

Summary

This chapter contains sections titled:

  • Introduction

  • Modeling Glass Formers by an Energy Gap

  • Glass Transition: A Brief Survey

  • Localization in Glassy Materials

  • Some Glass Transition Theories

  • Progigine–Defay Ratio Π and the Significance of Entropy

  • Equilibrium Formulation and Order Parameter

  • Restricted Ensemble

  • Three Useful Theorems

  • 1D Polymer Model: Exact Calculation

  • Glass Transition in a Binary Mixture

  • Ideal Glass Singularity and the Order Parameter

  • Conclusions

  • Appendix 10.A: Classical Statistical Mechanics

  • Appendix 10.B: Negative Entropy

  • References