20. Mathematical Optimization Techniques

  1. Dr.-Ing. Stephan Russenschuck

Published Online: 20 JAN 2011

DOI: 10.1002/9783527635467.ch20

Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

How to Cite

Russenschuck, S. (2010) Mathematical Optimization Techniques, in Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527635467.ch20

Author Information

Publication History

  1. Published Online: 20 JAN 2011
  2. Published Print: 10 MAR 2010

ISBN Information

Print ISBN: 9783527407699

Online ISBN: 9783527635467

SEARCH

Keywords:

  • mathematical optimization techniques;
  • optimality criteria;
  • unconstrained problems;
  • Karush–Kuhn–Tucker conditions;
  • Pareto optimality;
  • box constraints;
  • nonlinear constraints;
  • deterministic optimization algorithms;
  • genetic optimization algorithms

Summary

This chapter contains sections titled:

  • Mathematical Formulation of the Optimization Problem

  • Optimality Criteria for Unconstrained Problems

  • Karush–Kuhn–Tucker Conditions

  • Pareto Optimality

  • Methods for Decision Making

  • Box Constraints

  • Treatment of Nonlinear Constraints

  • Deterministic Optimization Algorithms

  • Genetic Optimization Algorithms

  • Applications

  • References