SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

Objective

Accurate diagnosis of cardiovascular involvement in connective tissue diseases (CTDs) remains challenging. We hypothesized that cardiovascular magnetic resonance (CMR) demonstrates cardiac lesions in symptomatic CTD patients with normal echocardiography.

Methods

CMR from 246 CTD patients with typical cardiac symptoms (TCS; n = 146, group A) or atypical cardiac symptoms (ATCS; n = 100, group B) was retrospectively evaluated. Group A included 9 patients with inflammatory myopathy (IM), 35 with sarcoidosis, 30 with systemic sclerosis (SSc), 14 with systemic lupus erythematosus (SLE), 10 with rheumatoid arthritis (RA), and 48 with small vessel vasculitis. Group B included 25 patients with RA, 20 with SLE, 20 with sarcoidosis, 15 with SSc, 10 with IM, and 10 with small vessel vasculitis. CMR was performed by 1.5T; left ventricular ejection fraction, T2 ratio (edema imaging), and late gadolinium enhancement (LGE; fibrosis imaging) were evaluated. Acute and chronic lesions were characterized as LGE positive plus T2 ratio >2 and T2 ratio ≤2, respectively. According to LGE, lesions were characterized as diffuse subendocardial, subepicardial, and subendocardial/transmural due to vasculitis, myocarditis, and myocardial infarction, respectively. A stress study by dobutamine echocardiography or stress, nuclear, or adenosine CMR was performed in CTD patients with negative rest CMR.

Results

Abnormal CMR was identified in 32% (27% chronic) and 15% (12% chronic) of patients with TCS and ATCS, respectively. Lesions due to vasculitis, myocarditis, and myocardial infarction were evident in 27.4%, 62.6%, and 9.6% of CTD patients, respectively. Stress studies in CTD patients with negative CMR revealed coronary artery disease in 20%.

Conclusion

CMR in symptomatic CTD patients with normal echocardiography can assess disease acuity and identify vasculitis, myocarditis, and myocardial infarction.


INTRODUCTION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

Cardiovascular disease is an underestimated problem in systemic connective tissue diseases (CTDs). Patients may present with disease-associated heart involvement at diagnosis or later in the course of their illness. Clinical manifestations vary by disease, resulting in increased morbidity and mortality. Accelerated atherosclerosis and vasculitis (primary or secondary) may result in premature death ([1-8]).

Treatment of cardiac disease requires a combination of corticosteroids, cytotoxic agents, and cardiac medication. Therefore, early diagnosis is important for prompt therapy. Although advances in serologic testing have facilitated earlier diagnosis, affected patients still have a poor outcome because of subclinical heart disease and a lack of specific diagnostic tools.

Cardiovascular magnetic resonance (CMR), a noninvasive, nonradiating technique capable of performing functional and tissue characterization, already has been used in cardiology and recently in CTDs ([5-9]). However, the capability of CMR to detect pathophysiology of heart involvement in CTDs with normal laboratory and imaging findings has not been described. We hypothesized that by using the combination of T2-weighted images (edema imaging) and late gadolinium-enhanced (LGE) images (fibrosis imaging), CMR may be useful for evaluation of CTD patients with normal echocardiography. In the present study, we retrospectively evaluated the contribution of CMR to the assessment of heart involvement in CTD patients with normal echocardiography and recent onset of typical cardiac symptoms/signs (TCS) or atypical cardiac symptoms/signs (ATCS) referred over a period of 8 years.

Box 1. Significance & Innovations

  • Tissue characterization by cardiovascular magnetic resonance (CMR) in connective tissue disease (CTD) patients with either typical cardiac symptoms or atypical cardiac symptoms and normal left ventricular function can identify different patterns of myocardial lesions, including myocarditis, diffuse subendocardial vasculitis, and myocardial infarction; assess acuity of heart involvement; and classify patients as low or high risk according to fibrosis amount.
  • Symptomatic CTD patients with normal CMR should be evaluated by a stress study to exclude coronary artery disease.

PATIENTS AND METHODS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

Patients

Two hundred forty-six patients (mean ± SD age 46 ± 6 years, 187 women and 59 men) with CTDs referred by rheumatologists, internists, or lung physicians for CMR over 8 years were retrospectively selected on the basis of excellent CMR image quality and a normal echocardiography study. A normal echocardiography study was defined by normal ejection fraction (EF) of both ventricles and a lack of wall motion or systolic thickening abnormalities. The presence of mild, trivial mitral regurgitation was not considered as an abnormality. Forty percent of patients with normal echocardiograms were judged to have technically limited studies because of a bad acoustic window, obesity, and/or lung disease.

Twenty-seven patients with inadequate CMR quality because of motion or respiratory artifacts and 32 patients with heart failure documented by echocardiography were excluded from the study. One hundred forty-six of 246 patients presented with recent TCS, including shortness of breath, chest pain, palpitations, recent echocardiography changes, and/or an increase in troponin 1 (group A). This group included 9 patients with inflammatory myopathy (IM), 35 with sarcoidosis, 30 with systemic sclerosis (SSc), 14 with systemic lupus erythematosus (SLE), 10 with rheumatoid arthritis (RA), and 48 with small to medium vessel vasculitis (15 with microscopic polyangiitis, 20 with granulomatosis with polyangiitis [Wegener's] [GPA], and 13 with eosinophilic granulomatosis with polyangiitis [Churg-Strauss] [EGPA]). The remaining 100 patients, who presented with ATCS, included 25 patients with RA, 20 with SLE, 20 with sarcoidosis, 15 with SSc, 10 with IM, and 10 with GPA (group B). ATCS included easy fatigue, diffuse thoracic pain, and feeling unwell. The CMR examination was performed within 10–20 days after the onset of symptoms and echocardiography assessment. Patients' clinical characteristics are shown in Tables 1 and 2.

Table 1. Clinical characteristics of patients with connective tissue diseases at the time of cardiovascular magnetic resonance*
 Vasculitis (n = 58)Sarcoidosis (n = 55)SSc (n = 45)SLE (n = 34)RA (n = 35)IM (n = 19)
  1. Values are the percentage unless indicated otherwise. SSc = systemic sclerosis; SLE = systemic lupus erythematosus; RA = rheumatoid arthritis; IM = inflammatory myopathy; CRP = C-reactive protein; ESR = erythrocyte sedimentation rate; IHD = ischemic heart disease; ACE = angiotensin-converting enzyme; NSAIDs = nonsteroidal antiinflammatory drugs; DMARDs = disease-modifying antirheumatic drugs.

Age, mean ± SD years45 ± 341 ± 350 ± 232 ± 455 ± 343 ± 2
Sex, no. F/M46/1242/1338/732/220/159/10
Diabetes mellitus, no.543560
Dyslipidemia, no.443461
Smoking, no.321231
Hypertension, no.335221
CRP, mean ± SD mg/liter (normal range 0–5)10 ± 311 ± 39 ± 510 ± 49 ± 26 ± 3
ESR, mean ± SD mm/hour (normal range 0–10)17 ± 3.419 ± 512 ± 817 ± 720 ± 510 ± 7
Family history of IHD, no.543361
Disease duration, mean ± SD years3 ± 24 ± 25 ± 32 ± 14 ± 33 ± 1
ACE/angiotensin II receptor50301030350
Beta-blockers3020010100
Statins80604050600
Current prednisone803020302070
Current NSAIDs10000700
Current nonbiologic DMARDs80090905050
Current methotrexate00020600
Any current biologic DMARD0000600
Table 2. Data of connective tissue disease patients with positive cardiovascular magnetic resonance*
DiseaseAge, yearsTroponin 1Cardiac symptomsLVEDV, mlLVESV, mlLVEF, %T2 ratioLGE, % LV massLGE location
  1. Values are the mean ± SD unless indicated otherwise. LVEDV = left ventricular end-diastolic volume; LVESV = left ventricular end-systolic volume; LVEF = left ventricular ejection fraction; LGE = late gadolinium enhancement; SRC = sarcoidosis; TCS = typical cardiac symptoms; ATCS = atypical cardiac symptoms; diff subendo = diffuse subendocardial; subepi = subepicardial; RA = rheumatoid arthritis; intra = intramural; trans = transmural; SLE = systemic lupus erythematosus; EGPA = eosinophilic granulomatosis with polyangiitis (Churg-Strauss); GPA = granulomatosis with polyangiitis (Wegener's); SSc = systemic sclerosis; IM = inflammatory myopathy.

  2. a

    Values are the mean.

SRC (n = 13)41 ± 411 TCS, 2 ATCS157.7 ± 44.947.5 ± 16.458.5 ± 122 ± 0.86 ± 16 diff subendo, 7 subepi
RA (n = 10)53 ± 6.51+, 9−7 TCS, 3 ATCS166 ± 2669.4 ± 17.757.6 ± 72 ± 0.87.7 ± 2.83 diff subendo, 4 subepi, 1 intra, 2 trans
SLE (n = 12)37 ± 49 TCS, 3 ATCS166.2 ± 4471.8 ± 3057.8 ± 7.21.9 ± 0.58.3 ± 2.22 diff subendo, 6 subepi, 4 trans
EGPA (n = 1)a38+TCS174100433.58Diff subendo
GPA (n = 1)a45ATCS210122422.27Subepi
SSc (n = 18)46.5 ± 5.414 TCS, 4 ATCS150.2 ± 3053.4 ± 13.662.6 ± 4.61.85 ± 0.56.5 ± 15 diff subendo, 13 subepi
IM (n = 7)39 ± 25 TCS, 2 ATCS144.4 ± 2156.8 ± 1261 ± 41.68 ± 0.166.5 ± 2.37 subepi

CMR imaging

CMR was performed by a 1.5T scanner (Signa CV/i, GE Medical Systems) using echocardiography-triggered steady-state, free precession breath-hold cine (echo time [TE] 1.6 msec, repetition time [TR] 3.2 msec, flip angle 60°) in long-axis planes and sequential 8-mm short-axis slices (3-mm gap) from the atrioventricular ring to the apex. STIR T2-weighted images (triple inversion recovery; TE 60 msec, TR 2 × R-R interval, inversion time 170 msec, slice thickness 20 mm, flip angle 180°, pixel size 2.3 × 1.3 mm) were acquired in short-axis planes for edema imaging. Finally, LGE images were acquired 10 minutes after intravenous gadolinium diethylenetriaminepentaacetic acid (Schering; 0.2 mmoles/kg) in identical short-axis planes using an inversion-recovery gradient-echo sequence for fibrosis detection. Inversion times were adjusted to the null normal myocardium (typically 320–440 msec; pixel size 1.7 × 1.4 mm). Ventricular volumes and function were analyzed using specialized software (Medis) ([10-13]).

CMR analysis

CMR was evaluated independently by 2 experienced interpreters blinded to clinical data (SM, KB). Scans were reviewed for ventricular volumes/function using images from the steady-state free precession sequence. The T2 ratio was calculated by the ratio of myocardial to skeletal muscle signal intensity from STIR T2-weighted images ([14]). Finally, LGE images were assessed for subendocardial/transmural enhancement in the distribution of a coronary artery compatible with myocardial infarction ([15]), for intramural/subepicardial enhancement compatible with myocarditis ([14]), and for diffuse subendocardial fibrosis compatible with vasculitis ([9]). Patients were further subclassified into an acute (T2 ratio >2) or nonacute (T2 ratio ≤2) stage ([14, 15]). A combination of a T2 ratio >2 with positive LGE was considered positive for an acute myocardial lesion, whereas a T2 ratio ≤2 with positive LGE was considered positive for a chronic myocardial lesion ([7, 8]). According to the location and morphology of LGE, CTD patients were categorized as having 1) diffuse subendocardial LGE, indicative of subendocardial vasculitis; 2) intramural/subepicardial LGE not following the distribution of coronary arteries, indicative of myocarditis; and 3) subendocardial/transmural LGE following the distribution of coronary arteries, indicative of myocardial infarction. The possibility of amyloidosis in patients with diffuse subendocardial fibrosis was excluded because the classic presentation of diffuse subendocardial amyloidosis is best visualized on early (3–5 minutes) delayed imaging, but would not appear with the methods used here; additionally, it is usually accompanied by dilated atria, small hypertrophied ventricles, and thickening of the interatrial septum. None of these findings were seen in any of our patients. Furthermore, if cardiac amyloidosis is suspected and LGE imaging is difficult due to diffuse infiltration, absolute quantification of myocardial distribution volume of an extracellular agent as an indication of extracellular matrix size may have additional value. However, myocardial biopsy still remains the gold standard for amyloidosis documentation ([16]). Scans with completely normal range volumes and function with no LGE/T2 abnormalities were considered as normal.

Image analysis

In T2-weighted imaging, the signal ratio was measured from the region of interest covering the left ventricular (LV) myocardium as well as a skeletal muscle in the same slice. To assess the contrast-enhanced images (LGE), all short-axis slices from the base to the apex were inspected visually to identify areas of normal (completely nulled) myocardium. Mean ± SD signal intensity was derived and a threshold of 0.4 SD exceeding the mean was used to define areas of LGE. Summing the planimetered areas of LGE in all short-axis slices yielded the total volume, which was also expressed as a proportion of the total LV myocardium. Cine images were used for the evaluation of LVEF. LV endocardial borders were outlined on the end-systolic and end-diastolic short-axis view images covering the entire LV. LVEF was calculated as follows: LVEF = [(volume at end diastole − volume at end systole)/volume at end diastole].

Statistical analysis

All measurements were expressed as the mean ± SD. Statistical significance of the differences was investigated using the unpaired Student's t-test. Statistical significance was considered for P values less than 0.05.

RESULTS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

CMR abnormalities in patients with TCS

TCS included shortness of breath in 105 of 146 patients, chest pain in 25 of 146 patients, and palpitations in 16 of 146 patients; a combination of shortness of breath and chest pain in 13 of 146 patients; and a combination of shortness of breath and palpitations in 14 of 146 patients. Abnormal echocardiography findings included sinus tachycardia in 50 of 146 patients, supraventricular and ventricular ectopic beats in 15 of 146 patients, episodes of atrial fibrillation in 25 of 146 patients, negative T waves in 20 of 146 patients, Q waves in 5 of 146 patients, and ST depolarization changes in 35 of 146 patients. Echocardiography evaluation had revealed normal LV function in all patients. Increased troponin 1 was identified in 1 patient with EGPA and 1 patient with RA. N-terminal pro–brain natriuretic peptide (NT-proBNP) was within normal values in all except 6 patients (1 with EGPA, 2 with sarcoidosis, 1 with SSc, 1 with RA, and 1 with IM). The persistence of patients' symptoms/signs despite negative echocardiography evaluation, cardiac enzymes, and NT-proBNP was the main reason for CMR referral. CMR findings are described below.

Acute cardiac lesions

A T2 ratio >2 and positive LGE, indicative of acute myocardial lesions, were identified in 8 of 146 patients with TCS (1 with EGPA, 1 with RA, 3 with sarcoidosis, 2 with SSc, and 1 with SLE). LGE had a diffuse, subendocardial morphology in all except for the RA patient, who presented with subepicardial LGE in the inferior wall. Increased troponin 1 was identified in 1 patient with EGPA and 1 patient with RA (range 5–25 μg/liter, normal value <0.1). Radiographic coronary angiography, which was performed in the 2 patients with increased troponin 1, revealed normal coronaries in both patients. Endomyocardial biopsy (EMB), which was performed only in the RA patient, revealed acute myocardial inflammation meeting the Dallas criteria, and included myocyte necrosis, lymphocytes, plasma cells, and histiocytes. Polymerase chain reaction (PCR) analysis was negative for infectious agents. In SSc patients, the heart lesions were accompanied by pleuropericarditis, which was promptly ameliorated after steroid administration (Figure 1).

image

Figure 1. Diffuse subendocardial late gadolinium enhancement due to diffuse subendocardial fibrosis and pleuropericarditis (arrows) in a patient with systemic sclerosis.

Download figure to PowerPoint

Chronic cardiac lesions

According to LGE, CTD patients with a T2 ratio ≤2 were categorized as those with diffuse subendocardial, subepicardial, and transmural LGE. More specifically, a T2 ratio ≤2 and diffuse subendocardial fibrosis in the LV due to vasculitis were detected in 2 of 35 sarcoidosis patients, 2 of 30 SSc patients, 1 of 15 SLE patients, and 2 of 10 RA patients.

Six of 35 sarcoidosis patients with a normal LVEF and echocardiographic evidence of ventricular tachycardia had a normal T2 ratio, but had positive subepicardial LGE in the inferolateral wall and were referred for implantable cardiac defibrillator (ICD) implantation. Ten of 30 SSc patients with a normal LVEF had myocardial fibrosis (2 of 10 with nodular, 2 of 10 with subepicardial, and 6 of 10 with linear). Additionally, 5 of 10 IM patients, 4 of 15 SLE patients, and 2 of 10 RA patients had intramural/subepicardial LGE in the intraventricular septum and/or lateral and inferior wall due to past myocarditis (Figure 2A). EMB, which was performed in 2 of 4 SLE patients and 1 of 2 RA patients, revealed inflammatory myocarditis with PCR negative for infectious agents. Finally, a T2 ratio ≤2 and transmural LGE in the inferior wall because of past myocardial infarction were detected in 3 of 15 SLE patients and 2 of 10 RA patients (Figure 2B).

image

Figure 2. A, intramyocardial late gadolinium enhancement (LGE) in the interventricular septum and lateral wall of the left ventricle (LV; arrows) due to fibrosis during the course of myocardial inflammation in a patient with dermatomyositis and B, transmural LGE in the inferior wall of the LV (arrows) due to fibrosis during the course of myocardial infarction in a patient with systemic lupus erythematosus.

Download figure to PowerPoint

A decrease in LVEF unnoticed by echocardiography was documented in 4 sarcoidosis patients, 2 SSc patients, 2 SLE patients, 1 RA patient, 1 IM patient, and 1 EGPA patient. Radiographic coronary angiography, performed in all patients with impaired LV function, revealed normal coronaries.

CMR abnormalities in patients with ATCS

ATCS consisted of easy fatigue in 53 of 100 patients, diffuse thoracic pain in 34 of 100 patients, and feeling unwell in 13 of 100 patients. A combination of easy fatigue and feeling unwell was found in 11 of 100 patients. The evaluation of these patients revealed sinus tachycardia in 10 of 100 patients, supraventricular and ventricular ectopic beats in 8 of 100 patients, episodes of atrial fibrillation in 1 of 100 patients, negative T waves in 2 of 100 patients, Q waves in 1 of 100 patients, first-degree atrioventricular block in 1 of 100 patients, and ST depolarization changes in 30 of 100 patients. Positive troponin 1 was not identified in any of the patients. NT-proBNP was normal in all except 3 patients. Echocardiography revealed normal LV function in all patients. Abnormal CMR was identified in 15 of 100 patients.

Acute cardiac lesions

A T2 ratio >2 and positive subepicardial LGE due to acute myocarditis were identified in 3 of 15 patients (1 with GPA, 1 with SLE, and 1 with RA). Their radiographic coronary angiography was normal, and EMB performed in 2 of 3 patients with reduced LVEF (1 with SLE and 1 with RA) revealed positive histopathology for acute inflammation and negative PCR for infectious agents.

Chronic cardiac lesions

A T2 ratio ≤2 with positive subepicardial LGE, a T2 ratio ≤2 with diffuse subendocardial fibrosis, and a T2 ratio ≤2 with transmural LGE in the inferior wall of the LV were identified in 8 of 15 patients due to past myocarditis (1 with sarcoidosis, 1 with SLE, 3 with SSc, 2 with IM, and 1 with RA), 3 of 15 patients due to subendocardial vasculitis (1 with SSc, 1 with sarcoidosis, and 1 with RA), and 1 SLE patient due to past myocardial infarction (radiographic coronary angiography revealed total occlusion of the right coronary artery), respectively.

A decrease in LVEF, unnoticed by echocardiography, was assessed in 1 GPA patient, 1 SLE patient, and 1 RA patient. Radiographic coronary angiography was performed in all patients with impaired LV function and revealed normal coronary arteries.

Patients with TCS or ATCS and a normal CMR study

As shown in Table 3, when comparing patients with positive and negative CMR, those with negative CMR had significantly lower C-reactive protein levels and erythrocyte sedimentation rates (P < 0.05). No significant difference was identified in their functional CMR parameters (volumes and LVEF).

Table 3. Detailed comparison of clinical and CMR characteristics in patients with CTDs and positive CMR versus those with negative CMR*
 Positive CMR (n = 62)Negative CMR (n = 184)
  1. Values are the mean ± SD unless indicated otherwise. CMR = cardiovascular magnetic resonance; CTDs = connective tissue diseases; IHD = ischemic heart disease; CRP = C-reactive protein; ESR = erythrocyte sedimentation rate; LVEDV = left ventricular end-diastolic volume; LVESV = left ventricular end-systolic volume; LVEF = left ventricular ejection fraction; LGE = late gadolinium enhancement.

Sex, no. F/M47/15140/44
Diabetes mellitus, no. (%)3 (4.8)20 (10.8)
Dyslipidemia, no. (%)10 (16)12 (6.5)
Smoking, no. (%)2 (3.2)10 (5.4)
Family history of IHD, no. (%)7 (11.2)15 (8.15)
CRP, mg/liter (normal range 0–5)8.37 ± 3.694.48 ± 2.76
ESR, mm/hour (normal range 0–10)14.35 ± 5.087.72 ± 3.5
LVEDV, ml158.14 ± 35.3149.8 ± 26.7
LVESV, ml62.27 ± 20.657.7 ± 13.4
LVEF, %60.22 ± 6.1661.6 ± 3.6
LV mass, gm91.6 ± 2290.7 ± 23
T2 ratio1.96 ± 0.61.6 ± 0.1
LGE, % LV mass6.98 ± 20

CTD patients with both normal echocardiography and CMR were referred for ischemia evaluation; using the treadmill stress test, stress echocardiography, and nuclear and/or adenosine CMR, ischemia due to coronary artery disease was detected in 20% of the patients (18% with TCS and 2% with ATCS).

DISCUSSION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

Here we described our experience in CTD patients with normal echocardiography referred for evaluation of TCS or ATCS. By combining edema and fibrosis imaging, we identified heart lesions that could influence risk stratification, undetected by the routine noninvasive cardiac evaluation (Table 2). Classifying patients according to the amount of LGE, we found that 49 of 62 CMR-positive CTD patients had LGE >5% of LV. According to recent data, these patients were at a higher risk for future cardiac events compared to those without LGE or with LGE ≤5% of LV ([17]).

The main findings of the present study show that 1) CMR identified myocardial edema, indicative of acute myocardial lesions, in 3.25% of CTD patients; 2) CMR detected myocardial fibrosis in 25.2% of CTD patients with either TCS or ATCS and normal echocardiography; 3) CMR assessed impaired LVEF in 9 of 47 patients with TCS and 3 of 15 patients with ATCS undiagnosed by echocardiography; and 4) using the combination of edema and fibrosis imaging, CMR identified heart pathophysiology, undetected by the routine noninvasive evaluation.

In the past, edema could not be used as a diagnostic tool because even histology failed to provide reliable information on its presence. Extensive studies have confirmed a close correlation between T2 and edema ([18]). Adding T2 to a standard CMR protocol (function, perfusion, and scar) increased the specificity, positive predictive value, and overall accuracy for detection of an acute coronary syndrome from 84% to 96%, 55% to 85%, and 84% to 93%, respectively ([19]). Furthermore, using LGE, CMR not only detects myocardial infarction in as little as 1 cm3 of tissue, substantially less than other in vivo methods, but also has excellent agreement with histology in animal and human studies ([20, 21]). Finally, CMR was also proven useful in detecting small myocardial scars and diffuse subendocardial fibrosis that were missed by other imaging techniques ([9]). Even a small area of LGE (<2% of LV mass) was associated with a >7-fold increase in risk for a major adverse cardiac event ([22]).

According to previous studies, CMR identified cardiac involvement in vasculitis ([5]), sarcoidosis ([23]), SLE ([24, 25]), SSc ([26, 27]), RA ([28]), and EGPA ([29]) with or without abnormal echocardiography. However, to our knowledge, this is the first report presenting CMR findings in CTD patients with recent onset of cardiac symptoms/signs and normal echocardiography.

There are many studies emphasizing the role of LGE in the diagnosis of cardiac sarcoidosis ([30]). In all of our sarcoidosis patients with acute heart involvement, prompt immunosuppressive treatment was started; however, 1 patient developed episodes of ventricular tachycardia during the next 8 months and a defibrillator was implanted. Our findings were in agreement with previous studies supporting the finding that CMR reveals early lesions undetected by standard assessment. Additionally, CMR may potentially motivate early cardiac treatment in the future to avoid evolution to overt heart failure, according to the American College of Cardiology (ACC)/American Heart Association (AHA) guidelines ([31]). However, at the moment, although there are abundant observational data that LGE may identify situations of increased risk, there are as yet no randomized trials using LGE to institute or change treatment.

In SLE, premature damage occurs in both macro- and microvasculature ([31]) and relates to disease activity and duration ([32]). Furthermore, pathology studies have demonstrated the high incidence of vasculitis ([25]). A comparison between echocardiography and CMR in SLE showed CMR superiority over echocardiography ([33]). Additionally, echocardiography in SLE can be misleading regarding the etiology of myocardial lesions ([34]). There is evidence that an imaging approach combining T2 and LGE is useful to assess myocardial involvement in SLE ([35]). Furthermore, due to subclinical presentation of SLE myocarditis and the serious limitations of EMB, CMR may be the best alternative for diagnosis ([36]). In our SLE patients with TCS, 1 had acute subendocardial vasculitis and 8 had myocardial fibrosis due to diffuse subendocardial vasculitis, myocarditis, and past transmural myocardial infarction. The patient with acute vasculitis had a recent history of disease flare. In the SLE patients with ATCS, CMR identified 1 patient with clinically silent, acute myocarditis verified by EMB, and 2 with myocardial fibrosis due to past myocarditis and past myocardial infarction, unnoticed by both the patients and physicians.

In SSc, vasculitis can present with concurrent pleuropericarditis and may predispose to subsequent renal failure ([27, 28]). Two of our SSc patients with acute vasculitis also had pleuropericarditis and responded well to steroid treatment. In SSc, fibrosis is the result of microvascular disease and can appear at any stage of the disease ([37]). Different CMR fibrotic patterns have been described previously ([28, 37]). These patterns were also found in our SSc patients, although their routine, noninvasive evaluation was normal.

Myocarditis is a rare but well recognized form of RA ([38]) and can be associated with secondary cardiomyopathy ([39]). Corticosteroids and antimalarials, commonly used in the treatment of RA, rarely have been associated with cardiac injury ([40]). Secondary vasculitis also has been described in RA. In a pathology study of 161 RA patients, systemic vasculitis was observed in 22.4% and the most frequently involved organ was the heart (66.7%) ([29]). However, clinically detected vasculitis in RA is rather low. Finally, RA patients are twice as likely to develop myocardial infraction, irrespective of age, history of prior cardiovascular disease events, and traditional risk factors ([41]). In our RA patients with TCS, we identified 1 patient with acute myocarditis and 6 with fibrosis due to past myocarditis, diffuse subendocardial fibrosis, and past myocardial infarction. Our findings were in agreement with previous studies identifying these types of pathology in RA ([38-41]). The evaluation of those with RA and ATCS revealed 1 patient with acute myocarditis and 2 with fibrosis due to past myocarditis and diffuse subendocardial vasculitis.

In a study of 32 EGPA patients in remission who were previously unaware of cardiac involvement, CMR revealed a 62% prevalence of cardiac involvement compared with 3% in controls ([42]). In our vasculitis patients with TCS, 1 patient with EGPA had a clinical presentation mimicking acute myocardial infarction. Therefore, she underwent a coronary angiography with normal results. Although guideline recommendations about CMR in acute coronary syndromes are still missing, if the CMR evaluation was included as the first noninvasive technique in the diagnostic algorithm, an unnecessary interventional coronary angiography could be avoided. In vasculitis patients with ATCS, CMR detected a silent, acute myocardial inflammation in 1 GPA patient, unnoticed by clinical and echocardiographic evaluation. It is rather strange that we found only 2 vasculitis patients with abnormal CMR findings. However, there are some possible explanations for this. The usually dramatic clinical presentation of these patients orders the prompt coronary angiography, bypassing any sophisticated assessment, such as CMR. Additionally, after heart involvement, most of the patients have impaired cardiac function and therefore were not included in this study.

Finally, in IM, cardiac involvement is an important cause of mortality. In previously published studies by our group, we assessed that CMR can unveil both acute and chronic silent myocardial lesions in IM ([43, 44]). In the current study, CMR identified fibrotic lesions indicative of past myocarditis in 7 IM patients (5 with TCS and 2 with ATCS).

Collectively, comparing patients with positive and negative CMR, we found that those with positive CMR had significantly higher inflammatory indices, although their LV function was not significantly different. This supports that LV dysfunction is a late event; therefore, inflammatory indices and CMR findings are more important for decision making of heart involvement in CTDs. Additionally, the lack of significant differences in risk factors between CTD patients with positive and negative CMR supports the multifactorial nature of heart involvement in CTDs.

Notably, in patients with normal CMR, the application of stress techniques revealed that 20% of the patients had evidence of coronary artery disease. This finding suggests that a noninvasive stress evaluation also should be included in the diagnostic evaluation of CTD patients with persistent TCS or ATCS and normal resting studies, either by echocardiography or by CMR, to exclude the possibility of coronary artery disease.

Based on the findings shown here, we propose that the additive value of CMR in the evaluation of CTD patients is focused on the detection of cardiac lesion acuity even in cases with subclinical presentation, as well as on the detection of myocardial fibrosis in CTD patients who are considered normal by echocardiography study. The LGE location and distribution are of value to assess the pathophysiology of cardiac lesions and schedule further diagnostic evaluation. More importantly, the extent of LGE is of great value for cardiac risk assessment. A study of 137 patients evaluated for ICD implantation proved that in patients with an LVEF >30%, the presence of LGE >5% of LV identifies a high-risk cohort similar in risk to those with an LVEF ≤30%. Conversely, in patients with an LVEF ≤30%, minimal or no scarring identifies a low-risk cohort, similar to those with an LVEF >30% ([17]). Along these lines, positive CMR results may potentially motivate cardiac treatment in the future to avoid evolution to overt heart failure, according to ACC/AHA guidelines ([31]), but randomized controlled trial data to support such practice are currently lacking.

To our knowledge, there are no studies comparing CMR data of CTD patients with ATCS and TCS. However, according to published CMR experience, it seems that myocardial inflammation is more common than was initially thought and in most cases, it is accompanied by a normal LVEF ([36, 45]). This is an important finding suggesting that myocardial involvement also can be found in CTD patients with ATCS and therefore should not be underestimated by the clinicians, and a normal LVEF and a lack of typical echocardiography findings and/or abnormal troponin 1 cannot exclude heart lesions. Since it is a technique able to detect early tissue changes before any LV dysfunction takes place, CMR could be considered as an important tool for early detection of heart involvement in CTD patients.

Furthermore, by classifying CTD patients according to LGE >5% or ≤5% of LV, we assessed that the majority of our CTD patients were at a higher risk for future cardiac events than patients with the same LVEF without LGE and/or with LGE ≤5% of LV ([17]). This unique information, given only by CMR, changes the heart assessment algorithm from functional evaluation, which is a late finding, to tissue characterization, which is a very early finding.

Finally, we should also mention that CMR detected impaired LVEF in 9 CTD patients with TCS and 3 with ATCS, unnoticed by echocardiography. This was not unusual because echocardiography is an operator-dependent technique, influenced by both the operator's experience and limitations of the acoustic window ([46]).

At the moment, strict criteria about the selection of CTD patients for CMR have not been established. The current experience from cardiology supports that CMR is the best noninvasive technique to detect myocardial edema in acute myocardial inflammation ([47]) and myocardial fibrosis in myocarditis, myocardial infarction, and/or cardiomyopathies ([15, 47, 48]). This experience was used by the referring physicians, who were aware of the CMR application and believed that it could clarify heart pathophysiology in CTD patients. Our findings support the necessity of CMR teaching not only in cardiologists, but also in other subspecialties of internal medicine.

Our results followed the current experience, already documented in cardiology, by proving the CMR diagnostic value in distinguishing disease acuity and patterns of myocardial fibrosis. Therefore, CMR may play an important role in the diagnostic evaluation of CTD patients. However, we emphasize that this is a descriptive case series, which is potentially useful for presenting the diagnostic and therapeutic challenges posed by the utilization of CMR in patients with CTDs, but it is not at this stage sufficiently generating compelling data to lead to practice changes. Further prospective, multicenter studies are needed to establish the full clinical implications of CMR in CTD patients.

Some limitations of the study include 1) a lack of internationally accepted criteria for the selection of CTD patients for CMR; only physicians aware of CMR advantages were referred to us and therefore, there is a significant bias that does not allow us to identify the true incidence of heart involvement in CTD patients; 2) a high likelihood for selection bias, since patients undergoing echocardiography and CMR at a referral center usually differ from the general CTD population; 3) patients' detailed echocardiography data were not available for a face-to-face comparison with CMR and new echocardiography techniques have not been applied; and 4) a lack of EMB and short- to long-term followup in the majority of our CTD patients.

In conclusion, tissue characterization by CMR in CTD patients with either TCS or ATCS and a normal LV can identify different patterns of myocardial lesions, including myocarditis, diffuse subendocardial vasculitis, and myocardial infarction. In parallel, it can assess acuity of heart involvement and classify patients as low or high risk according to fibrosis amount. This unique noninvasive information may have important clinical implications in early and accurate assessment of cardiac lesions in CTD patients that require further assessment in research protocols developed specifically for this purpose.

AUTHOR CONTRIBUTIONS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Mavrogeni had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study conception and design. Mavrogeni, Sfikakis, Gialafos, Bratis, Karabela, Stavropoulos, Spiliotis, Sfendouraki, Panopoulos, Bournia, Kolovou, Kitas.

Acquisition of data. Mavrogeni, Sfikakis, Gialafos, Bratis, Sfendouraki, Panopoulos, Bournia, Kolovou.

Analysis and interpretation of data. Mavrogeni, Sfikakis, Gialafos, Bratis, Karabela, Stavropoulos, Spiliotis, Sfendouraki, Panopoulos, Bournia, Kolovou, Kitas.

REFERENCES

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. PATIENTS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. AUTHOR CONTRIBUTIONS
  8. REFERENCES
  • 1
    Knockaert DC.Cardiac involvement in systemic inflammatory diseases.Eur Heart J2007;28:1797804.
  • 2
    Gonzalez-Gay MA, Garcia-Porrua C.Epidemiology of the vasculitides.Rheum Dis Clin North Am2001;27:72949.
  • 3
    Jayne D.The diagnosis of vasculitis.Best Pract Res Clin Rheumatol2009;23:44553.
  • 4
    Pipitone N, Versari A, Salvarani C.Role of imaging studies in the diagnosis and followup of large-vessel vasculitis: an update.Rheumatology (Oxford)2008;47:4038.
  • 5
    Mavrogeni S, Manoussakis MN, Karagiorga TC, Douskou M, Panagiotakos D, Bournia V, et al.Detection of coronary artery lesions and myocardial necrosis by magnetic resonance in systemic necrotizing vasculitides.Arthritis Rheum2009;61:11219.
  • 6
    Luqmani RA, Pathare S, Kwok-Fai TL.How to diagnose and treat secondary forms of vasculitis.Best Pract Res Clin Rheumatol2005;19:32136.
  • 7
    Mavrogeni S, Vassilopoulos D.Is there a place for cardiovascular magnetic resonance imaging in the evaluation of cardiovascular involvement in rheumatic diseases?Semin Arthritis Rheum2011;41:48896.
  • 8
    Mavrogeni S, Spargias K, Markussis V, Kolovou G, Demerouti E, Papadopoulou E, et al.Myocardial inflammation in autoimmune diseases: investigation by cardiovascular magnetic resonance and endomyocardial biopsy.Inflamm Allergy Drug Targets2009;8:3907.
  • 9
    Raman SV, Aneja A, Jarjour WN.CMR in inflammatory vasculitis.J Cardiovasc Magn Reson2012;14:82.
  • 10
    Bellenger NG, Pennell DJ. Ventricular function. In: Manning WJ, Pennell DJ, editors.Cardiovascular magnetic resonance.New York:Churchill Livingstone;2002. p.99111.
  • 11
    Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al.Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy.Am J Cardiol2002;90:2934.
  • 12
    Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ.Interstudy reproducibility of right ventricular volumes, function and mass with cardiovascular magnetic resonance.Am Heart J2004;147:21823.
  • 13
    Maceira AM, Prasad SK, Khan M, Pennell DJ.Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance.J Cardiovasc Magn Reson2006;8:41726.
  • 14
    Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al.Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches.J Am Coll Cardiol2005;45:181522.
  • 15
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al.Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.Circulation1999;100:19922002.
  • 16
    Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, et al.T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions.Circ Cardiovasc Imaging2012;5:4236.
  • 17
    Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, et al.Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation.J Am Coll Cardiol2012;60:40820.
  • 18
    Eitel I, Friedrich MG.T2-weighted cardiovascular magnetic resonance in acute cardiac disease.J Cardiovasc Magn Reson2011;13:13.
  • 19
    Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, et al.Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department.Circulation2008;118:83744.
  • 20
    Underwood R, Bax JJ, von Dahl J, Henein MY, Van Rossum AC, Schwartz E, et al.Imaging techniques for the assessment of myocardial hibernation: report of a study group of the European Society of Cardiology.Eur Heart J2004;25:81536.
  • 21
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al.The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.N Engl J Med2000;343:144553.
  • 22
    Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al.Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease.Circulation2006;113:273343.
  • 23
    Shigemitsu H, Nagai S, Sharma OP.Pulmonary hypertension and granulomatous vasculitis in sarcoidosis.Curr Opin Pulm Med2007;13:4348.
  • 24
    Piette JC, Chapelon C, Boussen K, Mouthon JM, Guillevin L, Bletry O, et al.Lupus vasculitis.Ann Med Interne (Paris)1987;138:42536. In French.
  • 25
    Sung JM, Hsu SC, Chen FF, Huang JJ.Systemic lupus erythematosus presented as non-inflammatory necrotizing vasculopathy-induced ischemic glomerulopathy and small vessels-related ischemic cardiomyopathy.Lupus2002;11:45862.
  • 26
    Abu-Shakra M, Koh ET, Treger T, Lee P.Pericardial effusion and vasculitis in a patient with systemic sclerosis.J Rheumatol1995;22:13868.
  • 27
    Mavrogeni S, Bratis K, Sfikakis PP.Pleuro-pericarditis, vasculitis, subendocardial and nodular biventricular fibrosis: the multiple faces of systemic sclerosis detected by cardiac magnetic resonance in the same patient.Int J Cardiol2013;163:e267.
  • 28
    Bely M, Apathy A.Vasculitis in rheumatoid arthritis.Orv Hetil1996;137:15718. In Hungarian.
  • 29
    Neumann T, Manger B, Schmid M, Kroegel C, Hansch A, Kaiser WA, et al.Cardiac involvement in Churg-Strauss syndrome: impact of endomyocarditis.Medicine (Baltimore)2009;88:23643.
  • 30
    Watanabe E, Kimura F, Nakajima T, Hiroe M, Kasai Y, Nagata M, et al.Late gadolinium enhancement in cardiac sarcoidosis: characteristic magnetic resonance findings and relationship with left ventricular function.J Thorac Imaging2013;28:606.
  • 31
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al, and the American College of Cardiology, American Heart Association Task Force on Practice Guidelines, American College of Chest Physicians, International Society for Heart and Lung Transplantation, and Heart Rhythm Society.ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society.Circulation2005;112:e154235.
  • 32
    Manzi S, Selzer F, Sutton-Tyrrell K, Fitzgerald SG, Rairie JE, Tracy RP, et al.Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus.Arthritis Rheum1999;42:5160.
  • 33
    O'Neill SG, Woldman S, Bailliard F, Norman W, McEwan J, Isenberg DA, et al.Cardiac magnetic resonance imaging in patients with systemic lupus erythematosus.Ann Rheum Dis2009;68:147881.
  • 34
    Mavrogeni S, Bratis K, Kolovou G.Pathophysiology of Q waves in II, III, avF in systemic lupus erythematosus: evaluation using cardiovascular magnetic resonance imaging.Lupus2012;21:8219.
  • 35
    Abdel-Aty H, Siegle N, Natusch A, Gromnica-Ihle E, Wassmuth R, Dietz R, et al.Myocardial tissue characterization in systemic lupus erythematosus: value of a comprehensive cardiovascular magnetic resonance approach.Lupus2008;17:5617.
  • 36
    Mavrogeni S, Bratis K, Markussis V, Spargias C, Papadopoulou E, Papamentzelopoulos S, et al.The diagnostic role of cardiac magnetic resonance imaging in detecting myocardial inflammation in systemic lupus erythematosus: differentiation from viral myocarditis.Lupus2013;22:3443.
  • 37
    Mavrogeni S, Bratis K, van Wijk K, Stavropoulos E, Hautemann D, Reiber JH, et al.Myocardial perfusion-fibrosis pattern in systemic sclerosis assessed by cardiac magnetic resonance.Int J Cardiol2012;159:e568.
  • 38
    Pappas DA, Taube JM, Bathon JM, Giles JT.A 73-year-old woman with rheumatoid arthritis and shortness of breath.Arthritis Rheum2008;59:8929.
  • 39
    Ahern M, Lever JV, Cosh J.Complete heart block in rheumatoid arthritis.Ann Rheum Dis1983;42:38997.
  • 40
    Chung JW, Joe DY, Park HJ, Kim HA, Park HS, Suh CH.Clinical characteristics of lupus myocarditis in Korea.Rheumatol Int2008;28:27580.
  • 41
    Bacon PA, Stevens RJ, Carruthers DM, Young SP, Kitas GD.Accelerated atherogenesis in autoimmune rheumatic diseases.Autoimmun Rev2002;1:33847.
  • 42
    Dennert RM, van Paassen P, Schalla S, Kuznetsova T, Alzand BS, Staessen JA, et al.Cardiac involvement in Churg-Strauss syndrome.Arthritis Rheum2010;62:62734.
  • 43
    Mavrogeni S, Bratis K, Karabela G, Stavropoulos E, Sfendouraki E, Kolovou G.Myocarditis during acute inflammatory myopathies: evaluation using clinical criteria and cardiac magnetic resonance imaging.Int J Cardiol2013;164:e34.
  • 44
    Mavrogeni S, Douskou M, Manoussakis MN.Contrast-enhanced CMR imaging reveals myocardial involvement in idiopathic inflammatory myopathy without cardiac manifestations [letter].JACC Cardiovasc Imaging2011;4:13245.
  • 45
    Kobayashi Y, Giles JT, Hirano M, Yokoe I, Nakajima Y, Bathon JM, et al.Assessment of myocardial abnormalities in rheumatoid arthritis using a comprehensive cardiac magnetic resonance approach: a pilot study.Arthritis Res Ther2010;12:R171.
  • 46
    Schalla S, Nagel E, Lehmkuhl H, Klein C, Bornstedt A, Schnackenburg B, et al.Comparison of magnetic resonance real-time imaging of LV function with conventional magnetic resonance imaging and echocardiography.Am J Cardiol2001;87:959.
  • 47
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al, and the International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis.Cardiovascular magnetic resonance in myocarditis: a JACC white paper.J Am Coll Cardiol2009;53:147587.
  • 48
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al.Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy.JAMA2013;309:896908.