Direct Synthesis of Periodic Mesoporous SilicoBoron CarboNitride Frameworks via the Nanocasting from Ordered Mesoporous Silica with Boron-Modified Polycarbosilazane

Authors

  • Samuel Bernard,

    1. IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
    Search for more papers by this author
  • Olivier Majoulet,

    1. IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
    Search for more papers by this author
  • Fabien Sandra,

    1. IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
    Search for more papers by this author
  • Annie Malchere,

    1. MATEIS, UMR 5510 (INSA-CNRS), INSA Lyon, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France
    Search for more papers by this author
  • Philippe Miele

    Corresponding author
    1. IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France
    • IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier, France.
    Search for more papers by this author

  • The authors wish to thank Abdeslam El Mansouri for N2 sorption experiments.

Abstract

Periodic mesoporous SilicoBoron CarboNitride (Si3.0B1.0C3.9N1.8) frameworks with p6mm hexagonal symmetry are prepared by a direct nanocasting process of ordered mesoporous silica. After a double infiltration/thermal cross-linking cycle with a boron-modified polycarbosilazane (BmPS) of the type [B(C2H4SiCH3NH)3]n (C2H4=CHCH3, CH2CH2), the derived BmPS confined in the porous structure of the periodic mesoporous silica template is subjected to a thermal process up to 1000 °C under N2 to be converted into the Si/B/C/N phase. A short chemical etching with dilute HF eliminates the silica template, which results in the formation of an open, continuous and highly ordered 2D hexagonal Si3.0B1.0C3.9N1.8 framework as demonstrated by EDX, LA-XRD, and HRTEM analyses. The highly ordered mesoporous Si3.0B1.0C3.9N1.8 ceramic displays a specific surface area of 337 m2 g−1, a high pore volume (0.55 cm3 g−1) and a narrow pore-size distribution centered on 4.6 nm by N2 sorption with an amorphous network remaining stable during continuous heat-treatment to 1400 °C in a nitrogen atmosphere.

Ancillary