• Fullerenes;
  • Organic–inorganic hybrid materials;
  • Solar cells, Polymer–fullerene


The current–voltage characteristics of ITO/PEDOT:PSS/OC1C10-PPV:PCBM/Al solar cells were measured in the temperature range 125–320 K under variable illumination, between 0.03 and 100 mW cm–2 (white light), with the aim of determining the efficiency-limiting mechanism(s) in these devices, and the temperature and/or illumination range(s) in which these devices demonstrate optimal performance. (ITO: indium tin oxide; PEDOT:PSS: poly(styrene sulfonate)-doped poly(ethylene dioxythiophene); OC1C10-PPV: poly[2-methoxy-5-(3,7-dimethyl octyloxy)-1,4-phenylene vinylene]; PCBM: phenyl-C61 butyric acid methyl ester.) The short-circuit current density and the fill factor grow monotonically with temperature until 320 K. This is indicative of a thermally activated transport of photogenerated charge carriers, influenced by recombination with shallow traps. A gradual increase of the open-circuit voltage to 0.91 V was observed upon cooling the devices down to 125 K. This fits the picture in which the open-circuit voltage is not limited by the work-function difference of electrode materials used. The overall effect of temperature on solar-cell parameters results in a positive temperature coefficient of the power conversion efficiency, which is 1.9 % at T = 320 K and 100 mW cm–2 (2.5 % at 0.7 mW cm–2). The almost-linear variation of the short-circuit current density with light intensity confirms that the internal recombination losses are predominantly of monomolecular type under short-circuit conditions. We present evidence that the efficiency of this type of solar cell is limited by a light-dependent shunt resistance. Furthermore, the electronic transport properties of the absorber materials, e.g., low effective charge-carrier mobility with a strong temperature dependence, limit the photogenerated current due to a high series resistance, therefore the active layer thickness must be kept low, which results in low absorption for this particular composite absorber.