Fabrication of Silicon Inverse Woodpile Photonic Crystals

Authors

  • M. Hermatschweiler,

    1. Institut für Angewandte Physik, Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    2. DFG-Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    Search for more papers by this author
  • A. Ledermann,

    1. Institut für Nanotechnologie, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, 76021 Karlsruhe (Germany)
    Search for more papers by this author
  • G. A. Ozin,

    1. Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6 (Canada)
    Search for more papers by this author
  • M. Wegener,

    1. Institut für Angewandte Physik, Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    2. DFG-Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    Search for more papers by this author
  • G. von Freymann

    1. Institut für Angewandte Physik, Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    2. DFG-Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH), 76128 Karlsruhe (Germany)
    3. Institut für Nanotechnologie, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, 76021 Karlsruhe (Germany)
    Search for more papers by this author

  • We acknowledge support provided by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A1.4. The research of G.v.F. is further supported through a DFG Emmy-Noether fellowship (DFG-Fr 1671/4-3). G.A.O. is Government of Canada Research Chair in Materials Chemistry. He is indebted to the Natural Sciences and Engineering Research Council of Canada for support of this research and the CFN for a Guest Professorship.

Abstract

Silicon inverse woodpile photonic crystals are fabricated for the first time. Our approach, which is based on direct laser writing of polymeric templates and a novel silicon single-inversion procedure, leads to high-quality structures with gap/midgap ratios of 14.2 %, centered at a wavelength of 2.5 μm. It is shown that gap/midgap ratios as large as 20.5 %, centered at 1.55 μm, may become possible in the future.

Ancillary