Interaction Scheme and Temperature Behavior of Energy Transfer in a Light-Emitting Inorganic-Organic Composite System

Authors

  • Antonio Alvaro Ranha Neves,

    1. NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia-Consiglio Nazionale delle Ricerche c/o Distretto Tecnologico ISUFI, Università del Salento via Arnesano, 73100 Lecce (Italy)
    Search for more papers by this author
  • Andrea Camposeo,

    1. NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia-Consiglio Nazionale delle Ricerche c/o Distretto Tecnologico ISUFI, Università del Salento via Arnesano, 73100 Lecce (Italy)
    Search for more papers by this author
  • Roberto Cingolani,

    1. NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia-Consiglio Nazionale delle Ricerche c/o Distretto Tecnologico ISUFI, Università del Salento via Arnesano, 73100 Lecce (Italy)
    Search for more papers by this author
  • Dario Pisignano

    Corresponding author
    1. NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia-Consiglio Nazionale delle Ricerche c/o Distretto Tecnologico ISUFI, Università del Salento via Arnesano, 73100 Lecce (Italy)
    • NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia-Consiglio Nazionale delle Ricerche c/o Distretto Tecnologico ISUFI, Università del Salento via Arnesano, 73100 Lecce (Italy)
    Search for more papers by this author

  • We gratefully acknowledge the financial support from the Regional Strategic Project “Ponamat” and from the Italian Institute of Technology.

Abstract

Determining and controlling the inter-component excitation conversion in light-emitting nanocomposite materials is a key factor for predicting the composite luminescence properties and for the operation of many opto-electronic devices. Here we present an extensive study of the inter-component energy transfer in the composite system given by ZnO particles interacting with the conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]. The composite emission is studied upon varying the acceptor concentration, and the system temperature in the range 50–300 K. The temperature dependence of the energy transfer rate is described by a rate model, taking into account the temperature dependence of the single components nonradiative decay rates, and a dipole–surface interaction scheme in the hybrid material. The proposed model accounts very well for the experimental observation of energy transfer and can be used to predict the temperature behavior of the emission from light-emitting nanocomposite materials.

Ancillary