Antimicrobial Gallium-Doped Phosphate-Based Glasses

Authors


  • This work was supported by the EPSRC, UK grant no. GR/T21080/01, EP/C000714/1 and EP/C000633/1. The authors would like to thank Nick Foster for his help with the collection of the Raman data. This work was undertaken at UCLH/UCL which received a proportion of funding from the department of health's NIHR Biomedical Research Centres Funding Scheme, UK.

Abstract

Novel quaternary gallium-doped phosphate-based glasses (1, 3, and 5 mol % Ga2O3) were synthesized using a conventional melt quenching technique. The bactericidal activities of the glasses were tested against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Clostridium difficile) bacteria. Results of the solubility and ion release studies showed that these glass systems are unique for controlled delivery of Ga3+. 71Ga NMR measurements showed that the gallium is mostly octahedrally coordinated by oxygen atoms, whilst FTIR spectroscopy provided evidence for the presence of a small proportion of tetrahedral gallium in the samples with the highest gallium content. FTIR and Raman spectra also afford an insight into the correlation between the structure and the observed dissolution behavior via an understanding of the atomic-scale network bonding characteristics. The results confirmed that the net bactericidal effect was due to Ga3+, and a concentration as low as 1 mol % Ga2O3 was sufficient to mount a potent antibacterial effect. The dearth of new antibiotics in development makes Ga3+ a potentially promising new therapeutic agent for pathogenic bacteria including MRSA and C. difficile.

Ancillary