SEARCH

SEARCH BY CITATION

Keywords:

  • elastomers;
  • field-effect transistors;
  • organic materials;
  • single crystal

Abstract

The organic field-effect transistor (OFET) has proven itself invaluable as both the fundamental element in organic circuits and the primary tool for the characterization of novel organic electronic materials. Crucial to the success of the OFET in each of these venues is a working understanding of the device physics that manifest themselves in the form of electrical characteristics. As commercial applications shift to smaller device dimensions and structure/property relationships become more refined, the understanding of these phenomena become increasingly critical. Here, we employ high-performance, elastomeric, photolithographically patterned single-crystal field-effect transistors as tools for the characterization of short-channel effects and bias-dependent parasitic contact resistance and field-effect mobility. Redundant characterization of devices at multiple channel lengths under a single crystal allow the morphology-free analysis of these effects, which is carried out in the context of a device model previously reported. The data show remarkable consistency with our model, yielding fresh insight into each of these phenomena, as well as confirming the utility of our FET design.