• coatings;
  • epoxies;
  • microvascular delivery;
  • self-healing materials


Multiple healing cycles of a single crack in a brittle polymer coating are achieved by microvascular delivery of a two-part, epoxy-based self-healing chemistry. Epoxy resin and amine-based curing agents are transported to the crack plane through two sets of independent vascular networks embedded within a ductile polymer substrate beneath the coating. The two reactive components remain isolated and stable in the vascular networks until crack formation occurs in the coating under a mechanical load. Both healing components are wicked by capillary forces into the crack plane, where they react and effectively bond the crack faces closed. Healing efficiencies of over 60% are achieved for up to 16 intermittent healing cycles of a single crack, which represents a significant improvement over systems in which a single monomeric healing agent is delivered.