• conjugated polymers;
  • electronic processes;
  • solar cells;
  • thin films


Here, a general experimental method to determine the energy ECT of intermolecular charge-transfer (CT) states in electron donor–acceptor (D–A) blends from ground state absorption and electrochemical measurements is proposed. This CT energy is calibrated against the photon energy of maximum CT luminescence from selected D–A blends to correct for a constant Coulombic term. It is shown that ECT correlates linearly with the open-circuit voltage (Voc) of photovoltaic devices in D–A blends via eVoc = ECT − 0.5 eV. Using the CT energy, it is found that photoinduced electron transfer (PET) from the lowest singlet excited state (S1 with energy Eg) in the blend to the CT state (S1[RIGHTWARDS ARROW] CT) occurs when Eg − ECT > 0.1 eV. Additionally, it is shown that subsequent charge recombination from the CT state to the lowest triplet excited state (ET) of D or A (CT [RIGHTWARDS ARROW] T1) can occur when ECT − ET > 0.1 eV. From these relations, it is concluded that in D–A blends optimized for photovoltaic action: i) the maximum attainable Voc is ultimately set by the optical band gap (eVoc = Eg − 0.6 eV) and ii) the singlet–triplet energy gap should be ΔEST < 0.2 eV to prevent recombination to the triplet state. These favorable conditions have not yet been met in conjugated materials and set the stage for further developments in this area.