Self-Assembly of a Donor-Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics

Authors

  • Jeffrey M. Mativetsky,

    1. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France)
    Search for more papers by this author
  • Marcel Kastler,

    1. Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz (Germany)
    Search for more papers by this author
  • Rebecca C. Savage,

    1. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France)
    Search for more papers by this author
  • Desirée Gentilini,

    1. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France)
    Search for more papers by this author
  • Matteo Palma,

    1. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France)
    Search for more papers by this author
  • Wojciech Pisula,

    1. Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz (Germany)
    2. Present address: Evonik Degussa GmbH Process Technology & Engineering Process Technology—New Processes, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang (Germany)
    Search for more papers by this author
  • Klaus Müllen,

    Corresponding author
    1. Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz (Germany)
    • Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz (Germany).
    Search for more papers by this author
  • Paolo Samorì

    Corresponding author
    1. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France)
    • Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS 7006 Université de Strasbourg 8, allée Gaspard Monge, 67000 Strasbourg (France).
    Search for more papers by this author

Abstract

Molecular dyads based on polycyclic electron donor (D) and electron acceptor (A) units represent suitable building blocks for forming highly ordered, solution-processable, nanosegregated D-A domains for potential use in (opto)electronic applications. A new dyad, based on alkyl substituted hexa-peri-hexabenzocoronene (HBC) and perylene monoimide (PMI) separated by an ethinylene linker, is shown to have a high tendency to self-assemble into ordered supramolecular arrangements at multiple length scales: macroscopic extruded filaments display long-range crystalline order, nanofiber networks are produced by simple spin-coating, and monolayers with a lamellar packing are formed by physisorption at the solution-HOPG interface. Moreover, highly uniform mesoscopic ribbons bearing atomically flat facets and steps with single-molecule heights self-assemble upon solvent-vapor annealing. Electrical measurements of HBC-PMI films and mesoscopic ribbons in a transistor configuration exhibit ambipolar transport with well balanced p- and n-type mobilities. Owing to the increased level of order at the supramolecular level, devices based on ribbons show mobility increases of more than one order of magnitude.

Ancillary