SEARCH

SEARCH BY CITATION

Keywords:

  • Azeotropes;
  • Binary solvents;
  • Single crystals;
  • Organic field-effect transistors

Abstract

Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous solutions comprising two solvents with opposing polarities and a positive azeotropic point. At solvent compositions close to the azeotropic point, an abrupt transition of morphology from polycrystalline thin-films to large single crystals is found. How to adjust the initial ratio of the binary solvents so that the change in solvent composition during evaporation favors the specific H-aggregation and promotes an efficient self-assembly of TIPS-PEN is explained. The charge-carrier (hole) mobilities are substantially enhanced by a factor of 4 from the morphology of thin-films to large single crystals used as active layer in field-effect transistors. Additionally, this approach is extended to other π–π stacked organic molecules to elucidate its broad applicability.