How Far Are We from Making Metamaterials by Self-Organization? The Microstructure of Highly Anisotropic Particles with an SRR-Like Geometry



Metamaterials offer new unusual electromagnetic properties, which have already been demonstrated, and many postulated new functionalities are yet to be realized. Currently, however, metamaterials are mostly limited by narrow band behavior, high losses, and limitation in making genuinely 3D materials. In order to overcome these problems an overlap between metamaterial concepts and materials science is necessary. Engineered self-organization is presented as a future approach to metamaterial manufacturing. Using directional solidification of eutectics, the first experimental realization of self-organized particles with a split-ring resonator-like cross section is demonstrated. This unusual morphology/microstructure of the eutectic composite has a fractal character. With the use of TEM and XRD the clear influence of the atomic crystal arrangement on the microstructure geometry is presented. The materials obtained present very high anisotropy and can be obtained in large pieces. Metallodielectric structures can be created by etching and filling the space with metal. The next steps in the development of self-organized materials exhibiting unusual properties are discussed.