SEARCH

SEARCH BY CITATION

Keywords:

  • conjugated polymers;
  • electrochromic materials;
  • organic field-effect transistors;
  • thiophene;
  • optically active materials

Abstract

The synthesis, unexpected efficient photoluminescence, and reversible electrochemical p- and n-doping of new conjugated thienylene vinylene materials functionalized with alkylsulfanyl substituents poly(trithienylene vinylene) (PTTV) and poly(dithienylvinyl-co-benzothiadiazole) (PDTVB) along with dithienylvinylene-based oligomers is reported. The materials are studied by thermal and X-ray diffraction analysis, optical spectroscopy, cyclic voltammetry, and spectroelectrochemistry. Organic field-effect transistors (OFETs) are fabricated with PTTV and PDTVB. The polymers, prepared by Stille polycondensation, exhibit good thermal stability and a photoluminescent quantum yield in the range 34%–68%. Low bandgaps (1.5–1.8 eV), estimated by optical and electrochemical measurements along with high stability of both redox states, suggest that these structures are promising materials for photovoltaic applications. OFETs fabricated with PDTVB reveal a hole mobility of 7 × 10−3 cm2 V−1 s−1 with on/off ratio 105, which are comparatively high values for completely amorphous polymer semiconductors.