SEARCH

SEARCH BY CITATION

Keywords:

  • electrolytes;
  • epitaxy;
  • interfaces;
  • sputtering;
  • yttria-stabilized zirconia

Abstract

Very high lateral ionic conductivities in epitaxial cubic yttria-stabilized zirconia (YSZ) synthesized on single-crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order ∼1 Ω−1cm−1) are observed at 500 °C for 58-nm-thick films on MgO. The results indicate a superposition of two parallel contributions – one due to bulk conductivity and one attributable to conduction along the film–substrate interface. Interfacial effects dominate the conductivity at low temperatures (<350 °C), showing more than three orders of magnitude enhancement compared to bulk YSZ. At higher temperatures, a more bulk-like conductivity is observed. The films have a negligible grain-boundary network, thus ruling out grain boundaries as a pathway for ionic conduction. The observed enhancement in lateral ionic conductivity is caused by a combination of misfit dislocation density and elastic strain in the interface. These very high ionic conductivities in the temperature range 150–500 °C are of great fundamental importance but may also be technologically relevant for low-temperature applications.