• dye-sensitized solar cells;
  • redox couple;
  • non-corrosion;
  • organic charge mediator;
  • carbon counter electrodes


A new colorless electrolyte containing an organic redox couple, tetramethylthiourea (TMTU) and its oxidized dimer tetramethylformaminium disulfide dication ([TMFDS]2+), is applied to dye-sensitized solar cells (DSCs). Advantages of this redox couple include its non-corrosive nature, low cost, and easy handling. More impressively, it operates well with carbon electrodes. The DSCs fabricated with a lab-made HCS-CB carbon counter-electrode can present up to 3.1% power conversion efficiency under AM 1.5 illumination of 100 mW·cm−2 and 4.5% under weaker light intensities. This result distinctly outperforms the identical DSCs with a Pt electrode. Corrosive experiments reveal that Al and stainless steel (SS) sheets are stable in the [TMFDS]2+/TMTU-based electrolyte. Its electrochemical impedance spectrum (EIS) is used to evaluate the influence of different counter-electrodes on the cell performance, and preliminary investigations reveal that carbon electrodes with large surface areas and ideal corrosion-inertness toward the sulfur-containing [TMFDS]2+/TMTU redox couple exhibit promise for application in iodine-free DSCs.