Get access

Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk-Heterojunction Organic Solar Cells in an Inverted Structure



Semitransparent inverted organic photodiodes are fabricated with a Baytron PH500 ethylene-glycol layer/silver grid as the top electrode. Reasonable performances are obtained under both rear- and front-side illumination and efficiencies up to 2% are achieved. Some light is shed on visual prospects through optical simulations for a semitransparent device of poly(3-hexylthiophene) (P3HT) and the C60 derivative 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C71 (PC70BM) in the inverted structure. These calculations allow the maximum efficiency achievable to be predicted for semitransparent cells based on P3HT:PC70BM versus the transparency perception for a human eye. The simulations suggest that low-bandgap materials such as poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) have a better potential for semitransparent devices. In addition, the color range recognized by the human eye is predicted by the optical simulation for some semitransparent devices including different active layers.