Advertisement

Immobilization on a Nanomagnetic Co/C Surface Using ROM Polymerization: Generation of a Hybrid Material as Support for a Recyclable Palladium Catalyst

Authors

  • Alexander Schätz,

    1. Institute for Organic Chemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany, Fax: (+49)941-943-4121
    Search for more papers by this author
  • Toby R. Long,

    1. Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA and The University of Kansas Center for Chemical, Methodologies and Library Development (KU-CMLD), 2121 Simons Drive, West Campus, Lawrence, KS, 66047, USA
    Search for more papers by this author
  • Robert N. Grass,

    1. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Wolfang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
    Search for more papers by this author
  • Wendelin J. Stark,

    1. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Wolfang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
    Search for more papers by this author
  • Paul R. Hanson,

    Corresponding author
    1. Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA and The University of Kansas Center for Chemical, Methodologies and Library Development (KU-CMLD), 2121 Simons Drive, West Campus, Lawrence, KS, 66047, USA
    • Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA and The University of Kansas Center for Chemical, Methodologies and Library Development (KU-CMLD), 2121 Simons Drive, West Campus, Lawrence, KS, 66047, USA.
    Search for more papers by this author
  • Oliver Reiser

    Corresponding author
    1. Institute for Organic Chemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany, Fax: (+49)941-943-4121
    • Institute for Organic Chemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany, Fax: (+49)941-943-4121
    Search for more papers by this author

Abstract

A novel hybrid material is reported as support for a recyclable palladium catalyst via surface immobilization of a ligand onto Co-based magnetic nanoparticles (NPs). A standard “click” reaction is utilized to covalently attach a norbornene tag (Nb-tag) to the surface of the carbon coated cobalt NPs. The hybrid magnetic nanoparticles are produced by initiating polymerization of a mixture containing both Nb-tagged ligand (Nb-tagged PPh3) and Nb-tagged carbon coated cobalt NPs. In turn, the norbornene units are suitably functionalized to serve as ligands for metal catalysts. A composite material is thus obtained which furnishes a loading that is one order of magnitude higher than the value obtained previously for the synthesis of functionalized Co/C-nanopowders. This allows for its application as a hybrid support with high local catalyst concentrations, as demonstrated for the immobilization of a highly active and recyclable palladium complex for Suzuki-Miyaura cross-coupling reactions. Due to the explicit magnetic moment of the cobalt-NPs, the overall magnetization of this organic/inorganic framework is significantly higher than of polymer coated iron oxide nanoparticles with comparable metal content, hence, its rapid separation from the reaction mixture and recycling via an external magnetic field is not hampered by the functionalized polymer shell.

Ancillary