SEARCH

SEARCH BY CITATION

Keywords:

  • fuel cells;
  • carbon nanotubes;
  • graphene;
  • hybrid structures

Abstract

A hierarchical N-doped carbon nanotube-graphene hybrid nanostructure (NCNT-GHN), in which the graphene layers are distributed inside the CNT inner cavities, was designed to efficiently support noble metal (e.g., PtRu) nanoparticles. Well-dispersed PtRu nanoparticles with diameters of 2–4 nm were immobilized onto these NCNT-GHN supports by a low-temperature chemical reduction method without any pretreatment. Compared to conventional CNTs and commercial catalysts. a much better catalytic performance was achieved by a synergistic effect of the hierarchical structure (graphene-CNT hybrid) and electronic modulation (N-doping) during the methanol electrooxidation reaction. Improved single-cell performances with long-term stability are also demonstrated using NCNT-GHN as catalyst support.